por Rhayssa » Qui Ago 27, 2009 00:20
GALERA PRECISO DE AJUDA! EMPAQUEI NESTA QUESTÃO AQUI:
QUANTOS VALORES DE X EXISTEM NO INTERVALO [0, 2

], PARA OS QUAIS SENX + COSX =
![\sqrt[]{\frac{2+\sqrt[]{3}}{2}} \sqrt[]{\frac{2+\sqrt[]{3}}{2}}](/latexrender/pictures/ca1e6ffbe5f141a704278bfe82ce7d4f.png)
.
Já tentei de todas as formas, mas n estou conseguindo enxergar onde estou errando!
Helpeeeeeeeeeeeee-me!!
-
Rhayssa
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Qua Ago 26, 2009 23:31
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por Elcioschin » Qui Ago 27, 2009 12:18
Lúcio
Como ainda não sei usar o LaTeX, vou escrever direto e resolver por outro caminho:
senx + cosx = [V(2 + V3)]/V2 ----> O numerador é do tipo V(A + VB) = Vx + Vy para A = 2 e B = 3
x = [A + V(A² - B)]/2 ----> x = [2 + V(2² - 3)]/2 -----> x = 3/2
y = [A - V(A² - B)]/2 ----> y = [2 - V(2² - 3)]/2 -----> y = 1/2
Logo o numerador vale ----> V(2 + V3) = V(3/2) + V(1/2) ----> V(2 + V3) = V3/V2 + 1/V2
Substituindo na equação original ----> senx + cosx = [V3/V2 + 1/V2]/V2 ----> senx + cosx = V3/2 + 1/2
Temos duas soluções, na primeira volta (no primeiro quadrante):
I) senx = V3/2 e cosx = 1/2 ----> x = pi/3
II) senx = 1/2 e cosx = V3/2 ----> x = pi/6
Não podemos esquecer que, a raiz original pode ter tanto o sinal positivo quanto o sinal negativo.
Neste caso, poderíamos escrever também:
senx + cosx = - [V3/V2 + 1/V2]/V2 ----> senx + cosx = - V3/2 - 1/2
Neste caso, haveriam mais duas soluções, na primeira volta (no 3º quadrante):
III) senx = - V3/2 e cosx = - 1/2 -----> x = 4*pi/3
IV) cosx = - 1/2 e senx = - V3/2 -----> x = 7*pi/6
O que você acha?
-
Elcioschin
- Colaborador Voluntário

-
- Mensagens: 624
- Registrado em: Sáb Ago 01, 2009 10:49
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: formado
por Rhayssa » Qui Ago 27, 2009 13:32
Muito obrigadaaaaaaa!
gente eu estava usando a primeira resolução, meu raciocínio foi esse tb, mas tava errando besteira e n tava enxergando o erro!
obrigda
-
Rhayssa
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Qua Ago 26, 2009 23:31
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por Lucio Carvalho » Qui Ago 27, 2009 22:56
Olá Elcioschin,
Gostei da tua resolução, mas tenho uma dúvida quando apresentas a (III) e (IV) soluções no 3º quadrante que eu também obteria se tivesse usado k =1. (Nota: usei apenas k = 0)
Considero que a soma de dois números negativos não poderá ser igual à raiz quadrada de um número positivo.
Se nos apresentarem, por exemplo:

então sabemos que: x = 2 ou x = -2. Mas, se nos apresentarem:
![x=\sqrt[]{4} x=\sqrt[]{4}](/latexrender/pictures/42e8fbd472e318e596f0638a896e5e36.png)
então só poderemos dizer que x = 2.
Compreendeu a minha preocupação!
Aguardo uma opinião.
-

Lucio Carvalho
- Colaborador Voluntário

-
- Mensagens: 127
- Registrado em: Qua Ago 19, 2009 11:33
- Localização: Rua 3 de Fevereiro - São Tomé
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Física/Química
- Andamento: formado
por Elcioschin » Sex Ago 28, 2009 00:05
Lúcio
Do ponto de vista puramente algébrico eu concordo.
Quanto ao problema trigonométrico proposto, as soluções negativas atendem.
Elcio
-
Elcioschin
- Colaborador Voluntário

-
- Mensagens: 624
- Registrado em: Sáb Ago 01, 2009 10:49
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: formado
Voltar para Trigonometria
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Equações] Me ajudem nessas equações do meu trabalho!
por henriquea92 » Sáb Jun 01, 2013 15:53
- 0 Respostas
- 3062 Exibições
- Última mensagem por henriquea92

Sáb Jun 01, 2013 15:53
Equações
-
- [Equações] Determinar Frações de equações
por fenixxx » Ter Fev 28, 2012 21:28
- 2 Respostas
- 3996 Exibições
- Última mensagem por fenixxx

Qua Fev 29, 2012 17:08
Funções
-
- Equações cartesianas e equações paramétricas
por Victor Mello » Sáb Ago 23, 2014 16:24
- 1 Respostas
- 3323 Exibições
- Última mensagem por Russman

Sáb Ago 23, 2014 18:29
Funções
-
- Equações
por Neperiano » Qua Fev 11, 2009 12:33
- 6 Respostas
- 6329 Exibições
- Última mensagem por marcio silva

Sex Mar 20, 2009 20:15
Sistemas de Equações
-
- Equações
por Luna » Qui Set 10, 2009 19:30
- 2 Respostas
- 2192 Exibições
- Última mensagem por Luna

Sex Set 11, 2009 19:54
Sistemas de Equações
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.