por jennakusterbeck » Qui Set 20, 2012 13:52
r: x = 2t
y = 1 - t
z = 2 + t


Sabendo que "r" e "s" são retas e ?1 e ?2 são planos, calcule a posição relativa entre:
a) (r, s)
b) (?1, ?2)
c) (s, ?1)
d) (r, ?2)
e) (s, ?2)
Na letra a e b, eu achei a resposta "reversas" e "concorrentes", respectivamente. Não sei se estão corretas, mas é um início, porque não conseguir nem começar as três últimas hehe.
-
jennakusterbeck
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Qui Set 20, 2012 13:32
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia de Produção
- Andamento: cursando
por LuizAquino » Qui Set 20, 2012 15:45
jennakusterbeck escreveu:r: x = 2t
y = 1 - t
z = 2 + t


Sabendo que "r" e "s" são retas e ?1 e ?2 são planos, calcule a posição relativa entre:
a) (r, s)
b) (?1, ?2)
c) (s, ?1)
d) (r, ?2)
e) (s, ?2)
Na letra a e b, eu achei a resposta "reversas" e "concorrentes", respectivamente. Não sei se estão corretas, mas é um início, porque não conseguir nem começar as três últimas hehe.
Suas respostas estão corretas para os itens a) e b).
Para saber como resolver os outros itens, eu gostaria de recomendar a videoaula "17. Geometria Analítica - Posição Relativa Entre Reta e Plano". Ela está disponível em meu canal no YouTube:
http://www.youtube.com/LCMAquinoSe após assistir a videoaula você não conseguir terminar o exercício, então poste aqui até onde conseguiu avançar.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por jennakusterbeck » Qui Set 20, 2012 16:44
Olá, acabei de ver esse vídeo, foi bem útil, obrigada. Pelo que eu pude fazer/entender, deu que todas as retas eram concorrentes, oblíquas ao plano. Achei a resposta um pouco estranha, mas nenhum produto interno deu igual a zero, e os vetores não eram múltiplos =/ Está certo?
-
jennakusterbeck
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Qui Set 20, 2012 13:32
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia de Produção
- Andamento: cursando
por LuizAquino » Qui Set 20, 2012 16:52
jennakusterbeck escreveu:Olá, acabei de ver esse vídeo, foi bem útil, obrigada.
Eu fico contente que tenha sido útil.
jennakusterbeck escreveu:Pelo que eu pude fazer/entender, deu que todas as retas eram concorrentes, oblíquas ao plano. Achei a resposta um pouco estranha, mas nenhum produto interno deu igual a zero, e os vetores não eram múltiplos =/ Está certo?
Sim, está certo.
Mas se o exercício tivesse pedido a posição relativa entre r e

, note que a resposta seria: r é paralela a

, sendo que r não está contida em

.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por jennakusterbeck » Qui Set 20, 2012 17:18
Obrigada

-
jennakusterbeck
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Qui Set 20, 2012 13:32
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia de Produção
- Andamento: cursando
Voltar para Geometria Analítica
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- posição relativa entre a reta r de equações paramétricas
por Ana Maria da Silva » Ter Jun 04, 2013 20:52
- 0 Respostas
- 1234 Exibições
- Última mensagem por Ana Maria da Silva

Ter Jun 04, 2013 20:52
Geometria Analítica
-
- [Posição relativa de retas e planos - Geometria Analítica]
por Gustavo195 » Dom Abr 07, 2013 16:34
- 0 Respostas
- 2432 Exibições
- Última mensagem por Gustavo195

Dom Abr 07, 2013 16:34
Geometria Analítica
-
- posição relativa entre os planos
por Ana Maria da Silva » Ter Jun 04, 2013 10:38
- 2 Respostas
- 3287 Exibições
- Última mensagem por Ana Maria da Silva

Ter Jun 04, 2013 20:31
Geometria Analítica
-
- posição relativa entre as retas r e pi
por Ana Maria da Silva » Qua Jun 05, 2013 11:55
- 0 Respostas
- 1231 Exibições
- Última mensagem por Ana Maria da Silva

Qua Jun 05, 2013 11:55
Geometria Analítica
-
- [SUPERFICIE] Posição relativa de reta em uma sup esférica
por amigao » Sáb Jun 29, 2013 11:23
- 1 Respostas
- 1978 Exibições
- Última mensagem por young_jedi

Dom Jun 30, 2013 18:04
Geometria Analítica
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.