por will94 » Sex Set 14, 2012 13:41
A principio dá uma indeterminação, mas que não consegui proceder de outras maneiras que não desse outra indeterminação
A resposta que tá no gabarito é
1/4![\lim_{x \rightarrow3} \frac{\sqrt[2]{1+x}-2}{x-3} \lim_{x \rightarrow3} \frac{\sqrt[2]{1+x}-2}{x-3}](/latexrender/pictures/909430a25ac2f579ddf3b7029bc7cf29.png)
Obrigado desde já

-
will94
- Novo Usuário

-
- Mensagens: 7
- Registrado em: Ter Mai 22, 2012 20:21
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Civil
- Andamento: cursando
por mih123 » Sex Set 14, 2012 14:15
Olá, costumo fazer dessa maneira:
Fazendo as multiplicações,fica assim:
![\frac{(x-3)(x+3)}{(x-3)(x+3)(\sqrt[2]{1+x}+2)} \frac{(x-3)(x+3)}{(x-3)(x+3)(\sqrt[2]{1+x}+2)}](/latexrender/pictures/2887c98be615e4001bcf53d4ee2072e6.png)
Ai, sobra :
![\lim_{x\to3}\frac{1}{\sqrt[2]{1+x}+2} \lim_{x\to3}\frac{1}{\sqrt[2]{1+x}+2}](/latexrender/pictures/90bd1f46f835f51c41d218d31321b796.png)
Substituindo o x por 3, a resposta será 1/4.
-
mih123
- Usuário Dedicado

-
- Mensagens: 35
- Registrado em: Seg Ago 27, 2012 03:15
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
por will94 » Sex Set 14, 2012 19:55
mih123 escreveu:Olá, costumo fazer dessa maneira:
Fazendo as multiplicações,fica assim:
![\frac{(x-3)(x+3)}{(x-3)(x+3)(\sqrt[2]{1+x}+2)} \frac{(x-3)(x+3)}{(x-3)(x+3)(\sqrt[2]{1+x}+2)}](/latexrender/pictures/2887c98be615e4001bcf53d4ee2072e6.png)
Ai, sobra :
![\lim_{x\to3}\frac{1}{\sqrt[2]{1+x}+2} \lim_{x\to3}\frac{1}{\sqrt[2]{1+x}+2}](/latexrender/pictures/90bd1f46f835f51c41d218d31321b796.png)
Substituindo o x por 3, a resposta será 1/4.
Muito obrigado, conversei com meu professor hoje e ele disse pra eu tentar dessa forma!
-
will94
- Novo Usuário

-
- Mensagens: 7
- Registrado em: Ter Mai 22, 2012 20:21
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Civil
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [LIMITE] Exercício em que o limite não existe!
por mih123 » Qua Ago 29, 2012 17:14
- 3 Respostas
- 2418 Exibições
- Última mensagem por e8group

Sex Ago 31, 2012 12:21
Cálculo: Limites, Derivadas e Integrais
-
- Exercicio de Limite
por Claudin » Sáb Mai 14, 2011 17:01
- 2 Respostas
- 1849 Exibições
- Última mensagem por Claudin

Dom Mai 15, 2011 11:57
Cálculo: Limites, Derivadas e Integrais
-
- Exercício Limite
por Claudin » Sáb Mai 21, 2011 16:34
- 3 Respostas
- 1835 Exibições
- Última mensagem por Claudin

Ter Mai 24, 2011 11:52
Cálculo: Limites, Derivadas e Integrais
-
- exercício de Limite
por jr_freitas » Qui Out 06, 2011 11:56
- 7 Respostas
- 3458 Exibições
- Última mensagem por moyses

Sex Out 07, 2011 11:33
Cálculo: Limites, Derivadas e Integrais
-
- Exercício {limite}
por Danilo » Qua Abr 10, 2013 23:16
- 2 Respostas
- 1408 Exibições
- Última mensagem por Danilo

Ter Abr 23, 2013 11:44
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 9 visitantes
Assunto:
(FGV) ... função novamente rs
Autor:
my2009 - Qua Dez 08, 2010 21:48
Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
Assunto:
(FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25
Uma função de 1º grau é dada por

.
Temos que para

,

e para

,

.

Ache o valor de

e

, monte a função e substitua

por

.
Assunto:
(FGV) ... função novamente rs
Autor:
Pinho - Qui Dez 16, 2010 13:57
my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20
Assunto:
(FGV) ... função novamente rs
Autor:
dagoth - Sex Dez 17, 2010 11:55
isso ai foi uma questao da FGV?
haahua to precisando trocar de faculdade.
Assunto:
(FGV) ... função novamente rs
Autor:
Thiago 86 - Qua Mar 06, 2013 23:11
Saudações!
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b
Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.