• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Limite] Exercicio de Limite

[Limite] Exercicio de Limite

Mensagempor will94 » Sex Set 14, 2012 13:41

A principio dá uma indeterminação, mas que não consegui proceder de outras maneiras que não desse outra indeterminação
A resposta que tá no gabarito é 1/4

\lim_{x \rightarrow3} \frac{\sqrt[2]{1+x}-2}{x-3}

Obrigado desde já ;)
will94
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Ter Mai 22, 2012 20:21
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: [Limite] Exercicio de Limite

Mensagempor mih123 » Sex Set 14, 2012 14:15

Olá, costumo fazer dessa maneira:

\frac{\sqrt[2]{1+x}-2}{x-3}.\frac{(\sqrt[2]{1+x}+2).(x+3)}{(x+3)(\sqrt[2]{1+x}+2)}

Fazendo as multiplicações,fica assim:

\frac{(x-3)(x+3)}{(x-3)(x+3)(\sqrt[2]{1+x}+2)}

Ai, sobra :
\lim_{x\to3}\frac{1}{\sqrt[2]{1+x}+2}

Substituindo o x por 3, a resposta será 1/4.
mih123
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 35
Registrado em: Seg Ago 27, 2012 03:15
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [Limite] Exercicio de Limite

Mensagempor will94 » Sex Set 14, 2012 19:55

mih123 escreveu:Olá, costumo fazer dessa maneira:

\frac{\sqrt[2]{1+x}-2}{x-3}.\frac{(\sqrt[2]{1+x}+2).(x+3)}{(x+3)(\sqrt[2]{1+x}+2)}

Fazendo as multiplicações,fica assim:

\frac{(x-3)(x+3)}{(x-3)(x+3)(\sqrt[2]{1+x}+2)}

Ai, sobra :
\lim_{x\to3}\frac{1}{\sqrt[2]{1+x}+2}

Substituindo o x por 3, a resposta será 1/4.



Muito obrigado, conversei com meu professor hoje e ele disse pra eu tentar dessa forma!
will94
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Ter Mai 22, 2012 20:21
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.