• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Determinar equação da Parábola]

[Determinar equação da Parábola]

Mensagempor aliceleite » Ter Set 04, 2012 20:20

Bom, essa questão é do Programa de Avaliação Seriada da UnB, referente ao segundo ano. Eu estou com um pouco de dificuldade para resolvê-la e gostaria da ajuda de vocês.Sou nova aqui no fórum, por favor, se eu fizer algo de errado, tenham paciência comigo. Desde já, muito obrigada a todos que se prestarem a oferecer qualquer ajuda! ^^

Considere que, no esquema mostrado, a distância entre os
pontos A e B é igual a 4k, em que k é um número real positivo.
Considere, ainda, que esses pontos são simétricos em relação
à origem do sistema de coordenadas e que C = (0, -k). Com
base nesses dados, obtenha a equação da parábola que passa
pelos pontos A, B e C em função da constante k.
Anexos
Sem título.png
Figura dada na prova
Sem título.png (26.42 KiB) Exibido 1430 vezes
aliceleite
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Ter Set 04, 2012 20:13
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Determinar equação da Parábola]

Mensagempor Russman » Qua Set 05, 2012 01:31

Bem vindo ao fórum. As regras gerais dizem que você deve postar sua tentativa de resolução. Mas vou tentar solucioná-la para você.

A equação da parábola, em uma de suas interpretações, pode ser escrita da seguinte forma:

y(x) = a(x-x_1)(x-x_2)

onde a é uma constante Real e x_1,x_2 são as raízes da mesma.

Pelo gráfico vemos que os pontos A e B são as intersecções da parábola com o eixo x, isto é, suas abscissas são as raízes da equação da parábola. A saber, x_A = x_1 e x_B = x_2, por exemplo.
Como a distância desses pontos é 4k, isto é, x_B - x_A = 4k \Rightarrow x_2 - x_1 = 4k, pois x_B >0 e x_A <0 portanto x_B>x_A, e , como são simétricos, isto é, x_B = -x_A \Rightarrow x_2 + x_1 = 0, temos o seguinte sistema:

\left\{\begin{matrix}
x_2-x_1=4k\\ 
x_2+x_1=0
\end{matrix}\right.

cuja solução é x_2=2k e x_1=-2k.

Logo, adiantando a equação, temos y(x) = a(x+2k)(x-2k).
Ainda, é fato que o ponto (0,-k) pertence a essa parábola. Assim,

y(x=0)=-k\Rightarrow a(-2k)(2k)=-k\Rightarrow -4ak^2=-k\Rightarrow a=\frac{1}{4k}, uma vez que k>0.

Portanto, a equação da parábola é y(x) = \frac{1}{4k}(x+2k)(x-2k). Ou então, y(x) =\left ( \frac{1}{4k} \right )x^2-k.

Rigth? (:
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.