por tuffy1 » Sáb Ago 25, 2012 18:35
Olá alguem poderia responder este exercicio eu estou com duvida e meu professor só enrola quando vou pergunta-ló.
Num triângulo retângulo um cateto mede 15cm e a hipotenusa mede 17 cm. Calcule o seno cosseno e a tangente do maior ângulo agudo desse triângulo.
Um avião levanta vôo de B e sobre fazendo um ângulo constante de 15º com a horízontal. A que altura estará e qual a distância percorrida, quando alcança a vertical que passa por uma igreja A situada a 2 km do ponto de partida?
-
tuffy1
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Sáb Ago 25, 2012 18:25
- Formação Escolar: ENSINO FUNDAMENTAL II
- Andamento: cursando
por e8group » Sáb Ago 25, 2012 20:32
Vou postar as diretrizes ,com base nisso reflita e conclua o exercício .
Considere o triângulo ABC , onde :


Ângulos agudos opostos aos segmentos |AB| e |BC|

.
Soulução :
Aplicando Teorema de Pitágoras em ABC,

.
Utilizando relações triginometricas em ABC ,
Note que

.Logo o maior
ângulo agudo é

.
Tente concluir o exercício .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por anfran1 » Dom Ago 26, 2012 10:24
Santhiago, acho que devemos simplificar a resolução de modo que o aluno entenda. Considerando que ele está do ensino fundamental, os conceitos de arcsin ainda não foram estudados e assim o menor ângulo de um triângulo é aquele que está oposto ao menor lado.
-
anfran1
- Usuário Dedicado

-
- Mensagens: 35
- Registrado em: Qui Jun 28, 2012 18:41
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por e8group » Dom Ago 26, 2012 14:04
anfran1 escreveu:Santhiago, acho que devemos simplificar a resolução de modo que o aluno entenda. Considerando que ele está do ensino fundamental, os conceitos de arcsin ainda não foram estudados e assim o menor ângulo de um triângulo é aquele que está oposto ao menor lado.
É ,pode ser .Minha intenção foi ajudar .Peço desculpas se o conceito acima (post anterior ) pode confundir tal aluno .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por MarceloFantini » Dom Ago 26, 2012 15:57
O maior ângulo agudo vê o maior cateto do triângulo. Como Santhiago já encontrou o outro cateto, basta aplicar as definições de seno, cosseno e tangente.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por tuffy1 » Dom Ago 26, 2012 18:40
Irei responder o resto do exercício. Obrigado pelas respostas.
-
tuffy1
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Sáb Ago 25, 2012 18:25
- Formação Escolar: ENSINO FUNDAMENTAL II
- Andamento: cursando
Voltar para Trigonometria
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- exercicio proposto-triangulo retangulo
por adauto martins » Ter Out 28, 2014 10:56
- 0 Respostas
- 894 Exibições
- Última mensagem por adauto martins

Ter Out 28, 2014 10:56
Cálculo: Limites, Derivadas e Integrais
-
- [Trigonometria] Dúvida... questão sobre triangulo retangulo
por rochadapesada » Qua Abr 24, 2013 17:57
- 5 Respostas
- 2989 Exibições
- Última mensagem por young_jedi

Qui Abr 25, 2013 23:26
Trigonometria
-
- Calculos envolvendo triângulo retângulo e retângulo
por andersontricordiano » Seg Abr 18, 2011 02:29
- 1 Respostas
- 3909 Exibições
- Última mensagem por MarceloFantini

Seg Abr 18, 2011 04:19
Progressões
-
- Dúvida em exercício {Área do triângulo}
por Danilo » Qua Jun 13, 2012 03:38
- 1 Respostas
- 1296 Exibições
- Última mensagem por LuizAquino

Qua Jun 13, 2012 11:04
Geometria Analítica
-
- Triangulo Retangulo
por ginrj » Qui Jun 04, 2009 18:56
- 1 Respostas
- 3314 Exibições
- Última mensagem por ginrj

Seg Jun 15, 2009 18:14
Geometria Plana
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.