• Anúncio Global
    Respostas
    Exibições
    Última mensagem

sucessões

sucessões

Mensagempor joanafrancisca » Ter Jul 24, 2012 23:23

tenho uma dúvida em relação ao que é suposto responder neste exercício.

O exercício começa por dizer que "2^n --> mais infinito" logo percebemos que esta sucessão é um infinitamente grande positivo.

56. Sabe-se que 2^n -> mais infinito.

56.1 Mostra que são infinitamente grandes positivos:
56.1.1 un = pi^n

56.1.2 vn= (1/3)^-n

56.1.3 wn= n+2^2n


A minha dúvida é se é suposto responder apenas em analogia com o "2^n tende para mais infinito" ou se devemos responder normalmente, usando o processo convencial.
joanafrancisca
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Dom Jul 22, 2012 20:30
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciências
Andamento: formado

Re: sucessões

Mensagempor Russman » Qua Jul 25, 2012 01:41

Eu acredito que você deva utilizar um processo de limite.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: sucessões

Mensagempor joanafrancisca » Qua Jul 25, 2012 01:53

então porque e que a pergunta não está formulada como é comum? Geralmente diz apenas para provar que é infinitamente grande positivo/negativo.


while we are on the subject,

tentei diversas vezes resolver esta sucessão de forma a mostrar que é um infinitamente grande negativo:

wn= 4-n^2 / n+2

mas no final -wn dá menor do que n, o que não é suposto. meh.
joanafrancisca
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Dom Jul 22, 2012 20:30
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciências
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.