• Anúncio Global
    Respostas
    Exibições
    Última mensagem

cilindro

cilindro

Mensagempor scoth » Sex Jul 20, 2012 20:07

Olá pessoal! questão longa mas que não consigo fechar.

Na ilustração ao lado, temos uma garrafa de café na forma cilíndrica com altura de 20 cm e largura de 12 cm e um coador na forma cônica com 13 cm da largura por 14 cm de altura. Além do corpo cilíndrico, a garrafa tem sua parte superior no formato de tronco de cone com 6 cm de altura e perímetro da boca igual a 6? cm. Suponha que, para preparar um café, o professor Eron colocou uma mistura de pó e açúcar no coador, observando que tal mistura ocupou 1/8 do espaço do coador. Em seguida, ele acrescentou rapidamente a água quente até a borda do coador. A partir dessas informações e admitindo o valor 3 como aproximação de ?, determine:

a) A quantidade de água, em litros, que o professor Eron despejou no coador.
b) O volume, em cm³, de pó de café e açúcar colocado no coador.
c) A diferença entre o volume de água despejado no coador e o volume de uma esfera de raio igual a 5,5 cm.
d) Para lavar a garrafa de café e o coador, o professor Eron gastou um volume de água equivalente ao volume das duas peças. Assim, considerando ? = 3, determine se a quantidade de água usada pode ser colocada, sem perdas, em um recipiente semi-esférico de raio igual a 10,5 cm

Sem título.5.png
scoth
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sex Jul 20, 2012 19:54
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: cilindro

Mensagempor Russman » Sex Jul 20, 2012 22:31

Você tentou fazer algo?
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: cilindro

Mensagempor scoth » Sex Jul 20, 2012 23:06

tentei e estou tentando, mas não consigo fechar, fico em duvida com o perímetro da boca e o volume das partes
scoth
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sex Jul 20, 2012 19:54
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: cilindro

Mensagempor fraol » Dom Jul 22, 2012 21:18

Boa noite,

Vou palpitar na parte relacionada ao tronco de cone da parte superior da garrafa.

Nesse caso, temos na base do tronco um círculo de raio R = 6 cm, pois a largura da garrafa é igual a 12 cm.

E temos no topo do tronco um círculo de raio r = 3 cm, pois o perímetro da boca é 2 \pi r = 6 \pi cm .

A fórmula para o volume desse tronco de cone é dado por V_{T} = \frac{1}{3} \cdot \pi \cdot h_{T} \cdot \left( R^2 + Rr + r^2 \right).

Daí em diante, sabido a fórmula para o cálculo do volume do cilindro (garrafa) = \pi R_{g}^2 \cdot H_{g} e para o cálculo do volume do cone (coador) = \frac{1}{3} \pi R_{c}^2 H_{c} é aplicar tais fórmulas para os dados fornecidos e fazer os cálculos.


Nas expressões acima temos _{T} = tronco, _{g} = garrafa, _{c} = coador.


.
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado


Voltar para Geometria Espacial

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}