• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Ranking de possíveis combinações

Ranking de possíveis combinações

Mensagempor GiuseppeAlb » Dom Jun 03, 2012 19:39

Boa tarde pessoal, estou com um problema e espero que consiga ajuda aqui...

Tenho um banco com 700 linhas e 33 colunas.
Cada coluna representa uma alternativa num questionário. Portanto, tenho alternativa 1 até 33.
A linha representa o respondente, então tenho 700 questionários respondidos.

Este questionário é de múltipla escolha, então o respondente pode assinalar quantas respostas ele quiser.
Tenho o banco mais ou menos assim:

Resp.|.P1.|.P2.|.P3.|.P4.|.P5.|.....|.P33
..1...|..1..|..2..|.....|..4..|......| ... |..33
..2...|.....|..2..|..3..|..4..|..5...| ... |....
..3...|..1..|.....|..3..|..4..|......| ... |..33
..4...|..1..|..2..|..3..|.....|..5...| ... |..33
..5...|......|..2..|..3..|..4..|..5...| ... |..33

Preciso fazer um ranking do 1º ao 20º colocado, do conjunto de dez respostas.
Por exemplo:

1º 1-5-6-10-11-12-20-25-26-28 (250 vezes)
2º 2-3-4-6-7-10-11-12-16-17 (180 vezes)
E assim por diante...

O meu problema é que, combinando 33 10 a 10, tenho mais de 90milhões de combinações possíveis.
Como faço para comparar entre as linhas, e extrair o grupo de dez números que mais aparece?

Estou junto com um professor tentando resolver esta questão há algum tempo, mas não conseguimos nada. Já se tornou mais que um desafio.

Agradeço quem puder ajudar!
GiuseppeAlb
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Dom Jun 03, 2012 19:32
Formação Escolar: GRADUAÇÃO
Área/Curso: Estatística
Andamento: cursando

Voltar para Estatística

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}