• Anúncio Global
    Respostas
    Exibições
    Última mensagem

inequação, Pontos na reta.

inequação, Pontos na reta.

Mensagempor ygor_macabu » Qui Abr 19, 2012 23:05

olá. estou com uma duvida nesse exercício (x² -5x +6)/ (1X² -x +42)\geq 0
achei as raízes , porem não estou conseguindo agrupa-las na reta devido as exeções da questão.
deu x\geq3 ou x\geq2  e x<-7 ou x<6
ygor_macabu
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Qui Abr 19, 2012 22:50
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Metalúrgica e Materiais
Andamento: cursando

Re: inequação, Pontos na reta.

Mensagempor ednaldo1982 » Qui Abr 19, 2012 23:39

A função x² - 5x + 6 é positiva no intervalo (-inf,2)U(3,+inf). Já a x²-x+42 é positiva para todo x real, isto é, (-inf,+inf).

Assim, o quociente será maior ou igual a zero em (-inf,2]U[3,+inf) .
Editado pela última vez por ednaldo1982 em Sex Abr 20, 2012 02:49, em um total de 2 vezes.
Avatar do usuário
ednaldo1982
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 44
Registrado em: Seg Mar 26, 2012 11:28
Formação Escolar: GRADUAÇÃO
Área/Curso: matematica
Andamento: formado

Re: inequação, Pontos na reta.

Mensagempor ygor_macabu » Sex Abr 20, 2012 00:31

por exemplo se em uma equação de segundo grau, utiliza-se as duas raízes para fazer a intercessão das retas?
ygor_macabu
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Qui Abr 19, 2012 22:50
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Metalúrgica e Materiais
Andamento: cursando

Re: inequação, Pontos na reta.

Mensagempor ednaldo1982 » Sex Abr 20, 2012 00:43

[x² - 5x + 6] / [x² - x + 42] >= 0

Restrições:

[x² - x + 42] tem que ser diferente de zero.

Delta = b² - 4 . a . c
Delta = (-1)² - 4 . 1 . 42
Delta = 1 - 168
Delta = - 167

Como delta é negativo não existe raiz real. Como o valor de a é positivo a concavidade da parábola é voltada para cima. Portanto, qualquer que seja o valor de x sempre teremos um valor positivo (e nunca será zero) para esta função.

Como sabemos que a função da parte de baixo da fração sempre será positiva, e que quando dividimos a parte de cima pela de baixo temos que ter um valor igual ou maior que zero, significa que a função de cima, pode resultar em zero ou ser um valor positivo, pois, se for negativo vem a regra de sinal e teríamos um resultano menor que zero.

Então, calculemos a função de cima x² - 5x + 6 = 0, e verificamos o estudo dos sinais da mesma.

Delta = b² - 4 . a . c
Delta = (-5)² - 4 . 1 . 6
Delta = 25 - 24
Delta = 1
\sqrt[]{\Delta} = 1

x = \frac{-b +ou-  \sqrt[]{\Delta} }{2a}

x = \frac{-(-5) +ou-  (1) }{2}

x = \frac{ 5 +ou-  (1) }{2}

x' = (5 + 1) / 2 = 6/2 = 3

x" = (5 - 1) / 2 = 4/2 = 2

A função da parte de cima é igual a zero quando x = 2 ou x = 3.


Esta função também tem concavidade para cima pois a é positivo.

Os valores menores que 2 geram resultados positivos (mesmo que a), os valores entre 2 e 3 geram resultados negativos (contrário de a) e os valores maiores que 3 geram resultados positivos (mesmo que a).

Portanto,como a função de cima não pode ser negativa devemos excluir o intervalo em que ela tem resultados negativos que é do 2 ao 3.

Sendo assim, a solução do exercício fica:


{ x \in \Re | (-\infty , 2] \cup [3 , +\infty) }
Editado pela última vez por ednaldo1982 em Sex Abr 20, 2012 15:36, em um total de 2 vezes.
Avatar do usuário
ednaldo1982
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 44
Registrado em: Seg Mar 26, 2012 11:28
Formação Escolar: GRADUAÇÃO
Área/Curso: matematica
Andamento: formado

Re: inequação, Pontos na reta.

Mensagempor ednaldo1982 » Sex Abr 20, 2012 00:50

apagado
Editado pela última vez por ednaldo1982 em Sex Abr 20, 2012 02:24, em um total de 1 vez.
Avatar do usuário
ednaldo1982
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 44
Registrado em: Seg Mar 26, 2012 11:28
Formação Escolar: GRADUAÇÃO
Área/Curso: matematica
Andamento: formado

Re: inequação, Pontos na reta.

Mensagempor ygor_macabu » Sex Abr 20, 2012 01:40

obrigado pela ajuda
ygor_macabu
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Qui Abr 19, 2012 22:50
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Metalúrgica e Materiais
Andamento: cursando


Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59