• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Geometria analitica - vertices do triangulo

Geometria analitica - vertices do triangulo

Mensagempor Dayannearaujo » Qui Abr 19, 2012 17:21

a questão é a seguinte: Dois vértices de um triangulo são A(4,1) e B(10,4). Determine as coordenadas do terceiro ponto sabendo que a area é 36,6 e que o trinagulo é retangulo.

eu consegui fazer uma parte do exercicio:

AB * AC

(10-4)i + (4-1)j * (x-4)i + (y-1)j
6i*(x-4)i + 3j*(y-1)j
6x+3y-27 = 0 ---> primeira equação

resolve-se a matriz:
i j k
6 3 0
x-4 y-1 0, obtendo-se: k*(6y-6) - (3x - 12)

agora eu não consegui sair dai, sei que tem q elevar ao quadrado, mas nao sei por onde começar! me ajudeeem! esse trabalho é pra amanha, vale bem nota! :/

obrigada.
Dayannearaujo
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qui Abr 19, 2012 17:10
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia civil
Andamento: cursando

Re: Geometria analitica - vertices do triangulo

Mensagempor LuizAquino » Sex Abr 20, 2012 00:07

Dayannearaujo escreveu:a questão é a seguinte: Dois vértices de um triangulo são A(4,1) e B(10,4). Determine as coordenadas do terceiro ponto sabendo que a area é 36,6 e que o trinagulo é retangulo.


Dayannearaujo escreveu:eu consegui fazer uma parte do exercicio:

AB * AC

(10-4)i + (4-1)j * (x-4)i + (y-1)j
6i*(x-4)i + 3j*(y-1)j
6x+3y-27 = 0 ---> primeira equação


Nesse caso, você está considerando que o ângulo reto está no vértice A. Como o exercício não especificou em qual vértice esse ângulo está, então na verdade a resolução deveria ser dividida em três casos: ângulo reto em A; ângulo reto em B; ângulo reto em C.

Dayannearaujo escreveu:resolve-se a matriz:
i j k
6 3 0
x-4 y-1 0, obtendo-se: k*(6y-6) - (3x - 12)


Você sabe que a área do triângulo ABC é 36,6. Além disso, você também sabe que essa área é igual a \frac{1}{2}\left\|\overrightarrow{AB}\times\overrightarrow{AC}\right\| .

Sendo assim, temos que:

\frac{1}{2}\sqrt{0^2 + 0^2 + [(6y-6) - (3x - 12)]^2} = 36,6

\sqrt{(6y - 3x + 6)^2} = 73,2

|6y - 3x + 6| = 73,2

Desse modo, você precisa resolver o sistema:

\begin{cases}
6x + 3y - 27 = 0 \\
|6y - 3x + 6| = 73,2
\end{cases}

Esse sistema pode ser dividido em dois casos.

Caso 1) 6y - 3x + 6 \geq 0

\begin{cases}
6x + 3y - 27 = 0 \\
6y - 3x + 6 = 73,2
\end{cases}

Caso 2) 6y - 3x + 6 < 0

\begin{cases}
6x + 3y - 27 = 0 \\
-(6y - 3x + 6) = 73,2
\end{cases}

Agora tente terminar o exercício.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}