• Anúncio Global
    Respostas
    Exibições
    Última mensagem

F(a) = G(a), ache o valor de a.

F(a) = G(a), ache o valor de a.

Mensagempor teusfon » Qui Abr 19, 2012 11:23

Bom dia,

Foi proposto pelo meu professor que fizessemos o seguinte exercício: Sendo f(x)=(3x-8+5/x)(x-2) e g(x)=5/3(1-3/x)(x²-3x+2), tal que f(a) = g(a) e f(b) = g(b). Calcule a+b. Fiz o exercício naturalmente e achei os valores de a = b = 1 e 2, logo a soma é 3. Só que está escrito no livro que a soma é 2. Já fiz de vários jeitos e não consegui ainda achar o resultado proposto! Vocês poderiam me ajudar?

Obrigado e uma boa semana!!
teusfon
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qui Abr 19, 2012 11:20
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: F(a) = G(a), ache o valor de a.

Mensagempor DanielFerreira » Sáb Abr 21, 2012 13:02

f(x) = \left(3x - 8 + \frac{5}{x} \right)\left(x - 2 \right) =============> f(x) = \frac{(3x^2 - 8x + 5)(x - 2)}{x}
e

g(x) = \frac{5}{3}\left(1 - \frac{3}{x} \right)\left(x^2 - 3x + 2 \right) ========> g(x) = \frac{5(x - 3)(x^2 - 3x + 2)}{3x}

f(a) = g(a)

\frac{(3a^2 - 8a + 5)(a - 2)}{a} = \frac{5(a - 3)(a^2 - 3a + 2)}{3a}

\frac{(3a^2 - 8a + 5)(a - 2)}{1} = \frac{5(a - 3)(a - 2)(a - 1)}{3}

\frac{(3a^2 - 8a + 5)}{1} = \frac{5(a - 3)(a - 1)}{3}

9a^2 - 24a + 15 = 5a^2 - 20a + 15

4a^2 - 4a = 0

4a(a - 1) = 0

a = 0

a = 1

O mesmo ocorre com "b".

Fizemos a = b = x, então a \neq 0
a + b =
1 + 1 =
2
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}