por apaula » Sex Fev 17, 2012 15:48
Não existem soluções racionais pra a equação

-----------
Fazendo a demonstração por absurdo foi admitida a fração

irredutível q satisfaz a equação


assim:

e

ou

e

Tomando

temos que

e ,portaanto, fração não é irreduível (
é importante dizer q a fração não é irredutível?)
e depois?
-
apaula
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Sex Fev 17, 2012 11:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Bachrelado em Ciência e Tecnologia
- Andamento: cursando
por MarceloFantini » Sáb Fev 18, 2012 00:23
Se você tem o produto de dois números
racionais que tem valor -1, não é verdade que um deles precisa ser um e outro precisa ser -1. Como um contra-exemplo simples, tome

e

de forma que

mas

e

. É importante lembrar que

tem de
necessariamente ser positivo, pois é soma de dois quadrados e isto jamais será negativo.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por apaula » Sáb Fev 18, 2012 21:30
ainda assim não consegui resolver.
algume ajuda?
-
apaula
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Sex Fev 17, 2012 11:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Bachrelado em Ciência e Tecnologia
- Andamento: cursando
Voltar para Álgebra Elementar
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- DEMONSTRAÇÃO POR REDUÇÃO AO ABSURDO
por washington_araujo » Ter Jun 26, 2012 10:28
- 5 Respostas
- 3414 Exibições
- Última mensagem por washington_araujo

Sex Jun 29, 2012 11:33
Álgebra Elementar
-
- PROVAR POR ABSURDO!!!!
por Rose » Sex Set 26, 2008 19:21
- 2 Respostas
- 3546 Exibições
- Última mensagem por admin

Ter Set 30, 2008 17:56
Geometria Plana
-
- Absurdo Matemático
por PedroSantos » Sáb Jan 15, 2011 19:18
- 2 Respostas
- 1827 Exibições
- Última mensagem por PedroSantos

Dom Jan 16, 2011 19:42
Álgebra Elementar
-
- Deonstração por absurdo
por apaula » Sex Fev 17, 2012 12:04
- 2 Respostas
- 3750 Exibições
- Última mensagem por lua_guyl

Ter Jun 30, 2015 13:01
Álgebra Elementar
-
- Prova por redução ao absurdo
por Aliocha Karamazov » Sex Jun 10, 2011 21:34
- 1 Respostas
- 3247 Exibições
- Última mensagem por Guill

Sáb Jul 23, 2011 22:35
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.