• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limites

Limites

Mensagempor Vincent Mazzei » Dom Abr 19, 2009 15:47

Dado que
\lim_{x \to a}f(x)=-3  \;\;\;\;   \lim_{x \to a}g(x)=0  \;\;\;\; \lim_{x \to a}h(x)=8
encontre, se existir, o limite. Caso não exista, explique por quê. (só vou colocar uma alternativa)

(d) {\lim_{x \to a}\frac{f(x)}{g(x)} }
Vincent Mazzei
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Dom Abr 19, 2009 15:33
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Limites

Mensagempor marciommuniz » Dom Abr 19, 2009 16:06

Pelas propriedades dos limites temos que

\lim_{x\rightarrow{a}_{}} \frac{f(x)}{g(x)} = \frac{\lim_{x\rightarrow{a}}f(x)}{\lim_{x\rightarrow{a}}g(x)} = \frac{-3}{0}

Sabemos que não existe divisão por zero, então o limite não existe!

Bons estudos!
"Nunca penso no futuro, ele chega rápido demais." Albert Einsten
Avatar do usuário
marciommuniz
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 29
Registrado em: Qua Abr 08, 2009 20:06
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Metalúrgica UFF /Química Lic. UENF
Andamento: cursando

Re: Limites

Mensagempor Vincent Mazzei » Dom Abr 19, 2009 16:38

Mas e se f(x) for x^2-1 e g(x) for x-1 sabemos que o limite quando x tende a 1 é igual a dois, foi por essa razão que fiquei em dúvida e pensei em responder: "impossível definir sem conhecer as funções". Estou errado?
Vincent Mazzei
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Dom Abr 19, 2009 15:33
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Limites

Mensagempor Molina » Seg Abr 20, 2009 12:56

Vincent Mazzei escreveu:Mas e se f(x) for x^2-1 e g(x) for x-1 sabemos que o limite quando x tende a 1 é igual a dois, foi por essa razão que fiquei em dúvida e pensei em responder: "impossível definir sem conhecer as funções". Estou errado?


Vê se é isso que você tinha dúvida:
Considerando as funções que você informou, e fazendo o quociente de uma pela a outra temos que:

\lim_{x\rightarrow1}\frac{f(x)}{g(x)} = \lim_{x\rightarrow1} \frac{x^2-1}{x-1}= \lim_{x\rightarrow1} \frac{(x-1)*(x+1)}{x-1} = \lim_{x\rightarrow1} x+1 = 2

Caso não for sua dúvida, desculpa.

Bom estudo! :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 8 visitantes

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.