• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Estou apanhando aqui!!!

Estou apanhando aqui!!!

Mensagempor Dinhofjr » Qua Nov 09, 2011 15:33

O triângulo retângulo ABC tem hipotenusa igual a 25 e perímetro 56. A área deste triângulo é:

eu sou muito ruim em trigonometria. já tentei fazer de tudo aqui, mas acho que falta algum dado. se alguém puder me ajudar?
Dinhofjr
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qua Nov 09, 2011 15:23
Formação Escolar: GRADUAÇÃO
Área/Curso: Zootecnia
Andamento: formado

Re: Estou apanhando aqui!!!

Mensagempor MarceloFantini » Qua Nov 09, 2011 17:21

Sejam a, b e c os lados desse triângulo, com c sendo a hipotenusa. A área será A = \frac{ab}{2}. Pelo enunciado, c=25 e a+b+c=56, de onde chegamos a+b=56 -c =56-25 = 31. Elevando os dois lados ao quadrado, teremos a^2 +2ab +b^2 = 31^2, mas pelo teorema de Pitágoras temos que a^2 +b^2 = c^2 = 25^2 e daí 2ab = 31^2 - 25^2 = (31-25)(31+25) = 336. Dividindo os dois lados por 4, teremos que \frac{ab}{2} = A = \frac{336}{4} = 84 unidades de área.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Estou apanhando aqui!!!

Mensagempor Dinhofjr » Qua Nov 09, 2011 18:37

ótima explicação!! muito obrigado. tentei fazer algo parecido com oq vc fez.... mas fiquei bem longe do teu raciocino.
Dinhofjr
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qua Nov 09, 2011 15:23
Formação Escolar: GRADUAÇÃO
Área/Curso: Zootecnia
Andamento: formado


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59