• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Pirâmides

Pirâmides

Mensagempor marry » Qua Nov 09, 2011 07:43

Olá, pessoal!

Estou cursando Química e dando aulas de matemática, isto é: tendo que estudar demaaaaaaaaais.
Meu Ensino Médio foi precário e agora tenho que ralar muito pra aprender e ensinar bem, este é o meu propósito. Estou com muita dificuldade em resolver alguns exercícios sobre pirâmides, então vou postá-los aqui e se alguém puder me ajudar, ficarei muito agradecida.


1)Determine a altira de uma pirâmide cuja área da base é B dm². Sabe-se que a secção transversal desta pirâmide está a 8 dm da base e a sua área é 1/4 da área da base.

2)Uma secção paralela à base feita a 3 cm do vértice tem área igual a 1/3 da área da base. Qual a altura da pirâmides em cm ?

3)(PUC- SP) Uma pirâmide tem 10 dm² de base e 2 m de altura. A distância da base a que se deve tração um plano paralelo para que a secção seja 1/5 da base é?

Acredito que com estes três consigo fazer os outros 21 ( :-O ) e ensinar pros meus meninos da melhor forma possível.


Se precisarem de ajuda em Química, me mandem msg que se estiver ao meu alcance, ficarei muito feliz em poder ajudar.
marry
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qua Nov 09, 2011 07:17
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Química
Andamento: cursando

Re: Pirâmides

Mensagempor Adriano Tavares » Dom Jan 01, 2012 16:55

Olá,marry.

a)

Pirâmides.gif
Pirâmides.gif (3.17 KiB) Exibido 4517 vezes



Sendo a razão de áreas de figuras semelhantes igual ao quadrado razão de semelhança teremos:

b=\frac{B}{4}

\frac{\frac{B}{4}}{B}=(\frac{x}{x+8})^2 \Rightarrow \frac{1}{4}=(\frac{x}{x+8})^2 \Rightarrow \frac{x}{x+8}=\sqrt{\frac{1}{4}} \Rightarrow \frac{x}{x+8}=\frac{1}{2} \Rightarrow x=8 \tex{dm}

h=x+8 \Rightarrow h=8+8 \Rightarrow h=16 \tex{dm}

b)

\frac{\frac{B}{3}}{B}=(\frac{3}{h})^2 \Rightarrow \frac{1}{3}=\frac{9}{h^2} \Rightarrow h^2=27 \Rightarrow h=3\sqrt{3} \tex{cm}

C)

Pirâmides.gif
Pirâmides.gif (3.34 KiB) Exibido 4517 vezes



2m \Rightarrow 20 \tex{dm}

\frac{1}{5}=(\frac{x}{20})^2 \Rightarrow  \frac{1}{5}=\frac{x^2}{400 } \Rightarrow 5x^2=400 \Rightarrow x^2=80 \Rightarrow x=4\sqrt{5} \tex{dm}

d=20-x \Rightarrow d=20-4\sqrt{5} \Rightarrow d=4(5-\sqrt{5}) \tex{dm}
Adriano Tavares
Usuário Ativo
Usuário Ativo
 
Mensagens: 19
Registrado em: Seg Mar 07, 2011 16:03
Formação Escolar: GRADUAÇÃO
Área/Curso: Tecnólogo em automação industrial
Andamento: formado


Voltar para Geometria Espacial

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}