• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Geometria Espacial + PG] Prismas

[Geometria Espacial + PG] Prismas

Mensagempor mayrahusein » Seg Out 17, 2011 16:38

Olá, sou nova por aqui e ando tendo muitas dúvidas com relação a geometria espacial. Tenho uma prova no dia 21/10 em que vai cair Progressão Geométrica, Prismas e Pirâmides, e eu não estou conseguindo resolver os exercícios. A primeira dúvida que quero enviar é de uma questão que envolve Prismas e Progressão Geométrica:

As medidas das três dimensões de um paralelepípedo retângulo estão em P.G. Sabendo que a área total e o volume deste paralelepípedo são, respectivamente, 112 cm² e 64 cm³, calcule as medidas das suas dimensões.

A resposta do gabarito é (2cm, 4 cm e 8cm), mas não consigo chegar nela!
Meus cálculos até agora:

a = xq
b = x
c = x/q

St = 2S1 + 2S2 + 2S3 V = Sb . h
St = 2(xq . x) + 2(x/q . x) + 2(x/q . xq) V = xq . x . x/q
St = 2x²q + 2x²/q + 2x² V = x³
112 = 2x²q + 2x²/q + 2x²
[112 = 2x²(q + 1/q + 1)] (:2)
56 = x²(q + 1/q + 1)

A partir daí dá tudo errado e não sei como continuar! Em que eu estou errando?
mayrahusein
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Seg Out 17, 2011 16:16
Formação Escolar: ENSINO MÉDIO
Área/Curso: Segundo ano
Andamento: cursando

Re: [Geometria Espacial + PG] Prismas

Mensagempor Caroline Piccoli » Qui Nov 17, 2011 11:33

Adorei esse problema!!! Muito legal mesmo!!!
Minha resolução:

At= 112 cm²
V= 64 cm³

a1=xq= c
a2= x= l
a3= x/q= h

Descobrindo o valor de x pela fórmula do volume.

V= c.l.h
V= xq.x.x/q
V= x³
64=x³
x=4

Substituindo o valor de x na equação da area total (at)

at= 2xq.x/q + 2.x.x/q+ 2.x.xq
at= 2x²+ 2x²/q + 2x²q
112= 32 + 32/q+ 32q
80= 32/q+32q²/q
80q= 32+32q²
32q² - 80q+32=0

Resolvendo essa equação do segundo grau, obtemos como raízes: q1=2 e q2= 1/2

Substituindo o valor de x e os valores de q encontrados, temos:

a1=c= xq1= 4.2=8 ou a1=c=xq2= 4.1/2=2
a2=l= x= 4
a3= h= x/q1= 4/2=2 ou a3=h= x/q2= 4/1/2= 8

Portanto as dimensões são: 2cm, 4 cm e 8 cm.
Caroline Piccoli
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qui Nov 17, 2011 11:03
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Geometria Espacial

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}