• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Dúvidas exercício

Dúvidas exercício

Mensagempor Anderson Silva » Dom Set 18, 2011 14:56

Como calcular a área da região limitada pelo gráfico da função y = x elevado a 3 e pela reta y = 3x - 2 , que é tangente à curva y = x elevado a 3 no ponto (1,1).

Obs: Encontrei onde as funções se interceptam(pontos -2 e 1), mas estou com dúvidas na conclusão do exercício pois achei o resultado 11/4 u.a. mas ao conferir a resposta encontrei o resultado 27/4 u.a. Gostaria de saber onde errei.
Grato desde já.
Anderson Silva
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Dom Set 18, 2011 14:44
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: Dúvidas exercício

Mensagempor LuizAquino » Dom Set 18, 2011 17:53

Anderson Silva escreveu:Gostaria de saber onde errei.

Como podemos dizer se você não enviou a sua resolução? Você determinou a interseção entre os gráficos de forma adequada. Provavelmente você se atrapalhou no cálculo da integral.

Note que o gráfico de y = x^3 está acima da reta y = 3x - 2 no intervalo [-2, 1]. Isto é, temos que x^3 \geq 3x - 2 para valores de x no intervalo [-2, 1].

Isso significa que a área delimitada será dada por:

\int_{-2}^1 x^3 - (3x-2)\,dx = \left[\frac{x^4}{4} - \frac{3x^2}{2} + 2x\right]_{-2}^1 = \left(\frac{1^4}{4} - \frac{3\cdot 1^2}{2} + 2\cdot 1\right) - \left[\frac{(-2)^4}{4} - \frac{3\cdot (-2)^2}{2} + 2\cdot (-2)\right] = \frac{27}{4}

Observação
Procure digitar as notações matemáticas usando o LaTeX. Leia o tópico falando a respeito:
DICA: Escrevendo Fórmulas com LaTeX via BBCode
viewtopic.php?f=9&t=74

Se precisar, use também o Editor de Fórmulas.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: