• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Matrizes B^2001

Matrizes B^2001

Mensagempor Vagner Almeida » Ter Fev 24, 2009 20:36

Olá...
Tenho uma questão que consegui resolver, mas tem algo que eu deveria notar,mas não consigo enchergar.
Bem, vamos lá:

Seja A = (a11=0; a12=1; a21=-1 e a22=1):

a) Calcule A.A , A.A.A, ..., A.A.A.A.A.A.A(7) - Desculpem, não vi ainda com utilizar fórmlas aqui.
Bem, este eu resolvi. Descobri que a Matriz A é igual a Matriz A^7.

b) O que é A^2001 e porque? Também resolvi, só não consigo exlicar o porque, mas descrevi o seguinte: Como A^1 = A^7 = A^13 = A^19, ou seja, a matriz se repete a cada 6 vezes, e é um número divisível por 2 e 3, então o único número que pode dividir 2001 encontrando como resposta um número inteiro é o 3, portanto A^2001 = A^3.

Daí gostaria que alguém pudesse me explicar melhor, pois a próxima questão diz:

Se B=(b11=1/2^1/2 (1/raiz de 2), b12= -1/2^1/2, b21=1/2^1/2 e b22=1/2^1/2), então B^2001 é..., Justifique.

Não consegui enchergar um padrão para resolver esse problema....

Alguém poderia me ajudar???? Agradeço desde já.
Vagner Almeida
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Ter Fev 24, 2009 20:11
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Computação
Andamento: cursando

Re: Matrizes B^2001

Mensagempor Molina » Sex Fev 27, 2009 22:12

Boa noite, Vagner.

A questão a) e b) foram feitas da forma certa. Na b) você verificou que de 6 em 6 elas se repetem, ou seja, voltam a ser A^1. Dessa forma 2001 = 333 * 6 + 3. Logo A^2001 = A^3


Se B=(b11=1/2^1/2 (1/raiz de 2), b12= -1/2^1/2, b21=1/2^1/2 e b22=1/2^1/2)

Teria como tentar escrever estes números utilizando o LaTeX?
Use este link: equationeditor/
ou este se tiver alguma dúvida: http://ajudamatematica.com/viewtopic.php?f=0&t=74

Abraços! :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Matrizes B^2001

Mensagempor Vagner Almeida » Sex Fev 27, 2009 22:43

Muitíssimo obrigado por ter me respondido, a matriz é a seguinte:

B=
\begin{pmatrix}
   \frac{1}{\sqrt[2]{2}} & -\frac{1}{\sqrt[2]{2}}  \\ 
   \frac{1}{\sqrt[2]{2}} & \frac{1}{\sqrt[2]{2}} 
\end{pmatrix}
Vagner Almeida
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Ter Fev 24, 2009 20:11
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Computação
Andamento: cursando

Re: Matrizes B^2001

Mensagempor Molina » Sáb Fev 28, 2009 01:10

Acho que a ideia é fazer a mesma coisa que fizesse nos outros itens e verificar quando que começam a se repetir. Assim você descobre quanto que é B^2001.

Infelizmente agora nao vai ser possivel fazer isso, mas chegando em casa tento fazer e assim que der coloco aqui alguma informação. Vá tentando tambem.

Abraços. :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Matrizes B^2001

Mensagempor Vagner Almeida » Dom Mar 01, 2009 15:59

Fiz até B^10, mas não se repetiu, acredito que não se repetirá, por isso acho que deveria ter algo a ser percebido que não percebi!

Mas somos brasileiros e não desistimos nunca!!!! Valeu, aguardo respostas e obrigado.
Vagner Almeida
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Ter Fev 24, 2009 20:11
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Computação
Andamento: cursando


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?