• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Sistemas lineares] - Método por adição

[Sistemas lineares] - Método por adição

Mensagempor Pstefani » Dom Set 04, 2011 23:52

Boa Noite Amigos.

É a minha primeira dúvida aqui neste fórum, espero poder compartilhar experiências juntos, bom vamos ao que enteressa:

Um posto presta serviço para os seus clientes, atendendo 3 tipo de automóveis: carro de passeio, camionete e caminhões. O valor cobrado para o carro de passeio é R$17,00, camionetes R$25,00 e caminhões R$30,00. Em um final de semana foram atendidos 24 veículos e o valor arrecadado foi de R$506,00. Sabe-se que o numero de carros de passeio superou os demais em duas unidades. Resolva o sistema correspondente:

X+Y+Z=24
17X+25Y+30Z=506

x=2+y+z

Acho que montei o sistema corretamente? Tranquei nesta parte, não sei como montar o resto da equação, se alguém puder me dar uma luz,não quero a resposta mas se puderem me dar uma dica fico muito agradecido.
Pstefani
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Dom Set 04, 2011 23:35
Formação Escolar: ENSINO MÉDIO
Área/Curso: Ti
Andamento: cursando

Re: [Sistemas lineares] - Método por adição

Mensagempor Caradoc » Seg Set 05, 2011 09:18

Está correto.
Você tem agora 3 equações para 3 incógnitas, ou seja, você vai conseguir resolver o sistema.

Somando a Eq1 + Eq3 você já descobre o valor de x.
Depois você pode substituir o valor encontrado nas Eq1 e Eq2, sobrando só 2 equações contendo y e z. A partir daí você resolve pra y e z também.
Caradoc
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 37
Registrado em: Qui Dez 16, 2010 17:17
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [Sistemas lineares] - Método por adição

Mensagempor Pstefani » Seg Set 05, 2011 14:47

Muito Obrigado pela resposta, mas to com dificuldades ainda,

X+Y+Z=24
x=2+y+z

2X + 2 + 2y + 2z=24

Fica desta forma? estou no caminho certo?

Desde já agradeço.
Pstefani
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Dom Set 04, 2011 23:35
Formação Escolar: ENSINO MÉDIO
Área/Curso: Ti
Andamento: cursando

Re: [Sistemas lineares] - Método por adição

Mensagempor Caradoc » Seg Set 05, 2011 22:56

Você tem que somar lado esquerdo de uma equação com o lado esquerdo da outra, o mesmo com o lado direito.
\begin{cases}
x+y+z=24&&
x=2+y+z
\end

x+y+z+x = 24 + 2 + y + z

Aí você pode cancelar z e y que estão somando dos dois lados, ficando:

2x = 26

Daí você conclui que: x = \frac{26}{2} = 13

Agora você pode substituir x=13 nas 2 primeiras equações e usar método da soma para resolver o resto.
Só lembrando que o interessante no método da soma é você multiplicar uma equação inteira por um número de forma que ao somar com a outra, você consiga eliminar uma variável.

Por exemplo, depois de substituir x=13 na primeira equação ficamos com:

y+z = 11

Agora você deve multiplicar essa equação por algo lhe perminta cancelar uma variável na soma. Por exemplo, multiplicando tudo por -25.

-25y - 25z = -275

Note que ao somar com a segunda equação a variável y vai sumir, permitindo que você encontre z.

Tente agora
Caradoc
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 37
Registrado em: Qui Dez 16, 2010 17:17
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [Sistemas lineares] - Método por adição

Mensagempor Pstefani » Ter Set 06, 2011 00:23

Muito Obrigado mesmo pela ajuda!!

Consegui entender bem a parte da montagem, porém o meu resultado não bate com o gabarito, veja só:

y+z=11 (-25)
25y+30z=506
-25z=-275
30z = 506
5z=231
z=231/5
z=46,20

Onde será que está errado?

Obrigado
Pstefani
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Dom Set 04, 2011 23:35
Formação Escolar: ENSINO MÉDIO
Área/Curso: Ti
Andamento: cursando

Re: [Sistemas lineares] - Método por adição

Mensagempor Caradoc » Ter Set 06, 2011 09:06

Você só se esqueceu de substituir o x = 13 na segunda equação.
Seria 17*13 + 25y +30z = 506
Ficando:
25y + 30z = 285
Caradoc
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 37
Registrado em: Qui Dez 16, 2010 17:17
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [Sistemas lineares] - Método por adição

Mensagempor Pstefani » Ter Set 06, 2011 09:47

Caradoc, feito!!!

Muito Obrigado mesmo pela ajuda.
Pstefani
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Dom Set 04, 2011 23:35
Formação Escolar: ENSINO MÉDIO
Área/Curso: Ti
Andamento: cursando


Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D