• Anúncio Global
    Respostas
    Exibições
    Última mensagem

algumas dúvidas urgentes!

algumas dúvidas urgentes!

Mensagempor kika » Ter Nov 25, 2008 00:37

Boa noite!
Amanhã eu terei prova de calculo 3, e existem alguns exercicios da lista que não consegui chegar a um resultado, será que alguém pode me auxiliar a resolução?

1)resolver a equação{z}^{4}+81=0 no conjunto dos números reais complexos e represente as soluções.
Resposta: {z}_{0}=3\left(\frac{\sqrt[]{2}}{2} +i\frac{\sqrt[]{2}}{2}\right) e {z}_{1}=3\left(-\frac{\sqrt[]{2}}{2} -i\frac{\sqrt[]{2}}{2}\right)

so que quando eu tentei resolver usando a formula das raizes eu consegui chegar em 4 respostas

2)Desenho o lugar geométrico dos afixos dos números complexos z tais que: z \left( z \right) + 5\left( z \right) + 5z + 9 = 0 considerar o (z) como Z barra ou (x-iy);

Sei que tenho que achar a equação e achar os pontos para traçar no plano de Argand-gauss, mas chego na equação:{x}^{2}+{y}^{2}+10x+9=0 como devo simplificar para achar os pontos, ou dessa equação tiro os pontos e coloco no gráfico? essa seria uma equação de reta, separando o y e tirando a raíz do resto?

Mas uma dúvida, em série de fourier, como achar a equação da reta paralela ao eixo x (negativo em x com os pontos \left(-\pi,\frac{\pi}{2} \right) e\left(0,\frac{\pi}{2} \right)) outra inclinada(com os pontos \left(0,-\pi \right) e \left(\pi,0 \right)), para iniciar os calculos?
kika
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Ter Nov 25, 2008 00:01
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando

Re: algumas dúvidas urgentes!

Mensagempor kika » Qui Nov 27, 2008 06:54

A primeira questão eu descobri que trocando {z}^{4}=\left(x+iy \right) eu chego e duas equações e igualando parte real com real e imaginária com imaginária, eu consigo achar que x=y chegando assim nas duas respostas:
{z}_{0}=3(\frac{\sqrt[]{2}}{2}+i\frac{\sqrt[]{2}}{2}) e {z}_{1}=3(-\frac{\sqrt[]{2}}{2}-i\frac{\sqrt[]{2}}{2})

Para a série de Fourier a primeira equação é f\left(x \right)=\frac{\pi}{2} e na segunda por matriz eu chego na equação \begin{align}
   
\begin{vmatrix}
   x & y & 1  \\ 
   0 & -\pi & 1  \\ 
   \pi & 1 & 1  

\end{vmatrix}

Se alguém ainda puder me dizer como continuo o segundo exercício ficaria agradecida!

Obrigada!
kika
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Ter Nov 25, 2008 00:01
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando


Voltar para Números Complexos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?