Bhaskara Akaria (em canarês: ????????????; 1114-1185, Vijayapura, Índia) foi um matemático, professor, astrólogo e astrônomo indiano, o mais importante matemático do século XII e último matemático medieval importante da Índia.
Filho de um astrólogo famoso chamado Mahesvara, tornou-se conhecido pela complementação da obra do conterrâneo Brahmagupta, por exemplo dando pioneiramente a solução geral da conhecida equação de Pell e a solução de um problema da divisão por zero, ao afirmar também pioneiramente, em sua publicação Vija-Ganita ou Bijaganita, um trabalho em 12 capítulos, que tal quociente seria infinito.
Tornou-se chefe do observatório astronômico a Ujjain, cidade onde ficou até morrer e o principal centro matemático da Índia na sua época, fama desenvolvida por excelentes matemáticos como Varahamihira e Brahmagupta, que ali tinham trabalhado e construído uma forte escola de astronomia matemática.
Sua obra representou a culminação de contribuições hindus anteriores. Seis trabalhos seus são conhecidos e um sétimo trabalho, reivindicado para ele, é considerado por muitos historiadores como uma não falsificação posterior.
A fórmula de Bhaskara, utilizada para determinar as raízes de uma equação quadrática é:
[tex]-b+-\sqrt{b^2-4.a.c}/frac(2.a)[tex]
Livros:
- O livro mais famoso de Bhaskara Acharya é o Lilavati, obra elementar dedicada a problemas simples de aritmética, geometria plana (medidas e trigonometria elementar ) e combinatória.
- A palavra Lilavati é um nome próprio de mulher (a tradução é "Graciosa"), e a razão de ter dado esse título a seu livro é porque, provavelmente, teria desejado fazer um trocadilho comparando a elegância de uma mulher da nobreza, com a elegância dos métodos da aritmética.
- Numa tradução turca desse livro, feita 400 anos mais tarde, teria sido inventada a história de que o livro seria uma homenagem à filha que não pode se casar.