por cazevedo » Seg Abr 25, 2011 22:19
Boa noite, estou quebrando a cabeça com o seguinte problema : "Considerando o que você apremdeu sobre polinômios,
responda: EXISTE ALGUM NÚMERO RACIONAL QUE SEJA IGUAL AO SEU CUBO MAIS UM ? " a minha dúvida é : achei x^3-x+1=0, fatorei e achei (x+1)(x^2-x+1) dando duas raízes imaginárias e uma raíz = -1. mas seu elevar (-1)^3 +1 =0 e não igual ao -1. O polonômio de terceiro grau pode ter uma raiz real negativa e duas imaginárias.Como eu saio dessa ???
-
cazevedo
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Seg Abr 25, 2011 22:07
- Formação Escolar: GRADUAÇÃO
- Área/Curso: lic em fisica
- Andamento: cursando
por FilipeCaceres » Seg Abr 25, 2011 22:22
Dê uma olhadinha no link
viewtopic.php?f=115&t=4248 nele tem explicado como encontrar raízes racionais de um polinômio.
Se vc não conseguir poste novamente que lhe ajudaremos.
Abraço.
-
FilipeCaceres
- Colaborador Voluntário

-
- Mensagens: 351
- Registrado em: Dom Out 31, 2010 21:43
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Tec. Mecatrônica
- Andamento: formado
por cazevedo » Ter Abr 26, 2011 19:25
Respondi da seguinte maneira :
x=x3 +1 ===> logo x3 - x +1 . Vamos tentar determinar as raízes racionais de g(x) = x3 - x + 1, como esse polinômio é mônico, as raízes racionais, se existirem, são números inteiros divisores de 1. Os divisores de 1 são : 1 e -1. Verificamos que:
f(1) = 13 - 1 +1 = 1 ou f(-1) = (-1)3 -1 +1 = -1.
Portanto :
x3 - x +1 = ( x2 - x +1)(x+1) e concluímos que (x-1)(x+1) não divide x3 - x +1.
A divisão pelo dispositivo de Briot-Ruffini de g(x)= x3 - x + 1 por x-1 para verificar se -1 é uma solução : -
x3 0x2 - x +1 ===> | 1 0 -1 1
|----------------
1 | 1 0 -1 1
O resto da divisão é 1 , o quociente é x2 - x , e podemos concluir :
Portanto não existe um número racional que seja igual ao seu cubo mais um.
-
cazevedo
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Seg Abr 25, 2011 22:07
- Formação Escolar: GRADUAÇÃO
- Área/Curso: lic em fisica
- Andamento: cursando
Voltar para Polinômios
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- (CESCEM-72) Trinômio
por aline2010 » Dom Jul 25, 2010 10:57
- 2 Respostas
- 2313 Exibições
- Última mensagem por agnesrava

Seg Mai 28, 2012 13:24
Álgebra Elementar
-
- Completando o trinomio
por Carlos28 » Qui Nov 08, 2012 08:19
- 2 Respostas
- 1440 Exibições
- Última mensagem por e8group

Qui Nov 08, 2012 09:26
Equações
-
- [FATORE O TRINÔMIO]
por mirikertty » Qua Dez 19, 2012 13:14
- 2 Respostas
- 2100 Exibições
- Última mensagem por joaofonseca

Sex Dez 21, 2012 22:00
Sistemas de Equações
-
- [Trinômio] Desenvolvimento
por silviopuc » Dom Dez 29, 2013 00:55
- 3 Respostas
- 1778 Exibições
- Última mensagem por e8group

Seg Dez 30, 2013 18:28
Álgebra Elementar
-
- Trinômio Quadrado Perfeito
por Balanar » Ter Ago 10, 2010 22:48
- 2 Respostas
- 4818 Exibições
- Última mensagem por DanielFerreira

Dom Jan 08, 2012 18:05
Desafios Difíceis
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.