• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Corrijam] Todo Corpo é domínio de Integridade

[Corrijam] Todo Corpo é domínio de Integridade

Mensagempor juliomarcos » Dom Set 14, 2008 00:46

Prove que todo corpo é domínio de integridade:

Definições do livro do Castrucci:
Um corpo é um anel com elemento unidade 1, onde todo elemento -{0}(elemento neutro da +) possui inverso.
Um domínio de integridade (ou anel de integridade) é um anel comutativo(vale a comutatividade na segunda operação(1) ) com elemento unidade e não possui divisores próprios do zero(2).

Todo corpo é domínio de integridade. Prova:
Seja C um corpo. Como vale o elemento inverso em C, a.a'=a'.a=1, logo também vale a comutatividade para a segunda operação. (1)
Suponha por absurdo que 0 tem inverso.
0.0'=1
0.0' + 0 = 1 + 0
0.(0' + 0) = 1
0 = 1
Absurdo, já que 0 é diferente de 1, logo 0.0' \neq 1 ou 0.0' = 0, mas como 0' não existe em C, 0 não tem divisores próprios.(2)

Algum perito em teoria dos conjuntos pode corrigir isto pra mim? Grato.
juliomarcos
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Dom Set 14, 2008 00:29
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da Computação
Andamento: cursando

Re: [Corrijam] Todo Corpo é domínio de Integridade

Mensagempor admin » Qua Set 17, 2008 04:04

Olá juliomarcos, boas-vindas!

Assumo uma modesta postura de aluno, tanto é que minha atual formação está longe de sanar dúvidas da graduação de um modo geral.

Ainda assim, acredito que sua suposição por absurdo deva ser outra.
Como queremos mostrar que os elementos do corpo não possuem divisores de zero, supomos por absurdo que eles possuem.

Eis uma demonstração de uma das minhas aulas em Álgebra II, também encontrada em alguns livros.
Adicionei alguns comentários:

Suponha por absurdo que existam a \in C, b \in C tais que
a\cdot b = 0 e a \neq 0 e b \neq 0
Note acima que esta suposição é equivalente a dizer que C não é um domínio e ainda a e b são divisores de zero!


Como C é corpo e a \neq 0, existe a^{-1} \in C tal que
a\cdot a^{-1} = a^{-1}\cdot a = 1

Então
b = 1\cdot b = (a^{-1}\cdot a) \cdot b = a^{-1}(a \cdot b) = a^{-1} \cdot 0 = 0

juliomarcos, veja um destaque sobre o absurdo: inicialmente havia a suposição de que b \neq 0.
Como concluímos que b=0, então b não é divisor de zero!

E pela definição de domínio de integridade:
Seja (A, +, \cdot) um anel comutativo com unidade.
Dizemos que A é um anel de integridade ou domínio de integridade ou simplesmente domínio se A satisfaz a seguinte condição:
a \cdot b = 0 \Rightarrow a = 0 ou b=0


Ou seja, como b=0, C é um domínio, pois a\cdot b = 0 por hipótese!


Espero ter ajudado.
Bons estudos!
Fábio Sousa
Equipe AjudaMatemática.com
| bibliografia | informações gerais | arquivo de dúvidas | desafios

"O tolo pensa que é sábio, mas o homem sábio sabe que ele próprio é um tolo."
William Shakespeare
Avatar do usuário
admin
Colaborador Administrador - Professor
Colaborador Administrador - Professor
 
Mensagens: 885
Registrado em: Qui Jul 19, 2007 10:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática IME-USP
Andamento: formado

Re: [Corrijam] Todo Corpo é domínio de Integridade

Mensagempor juliomarcos » Qua Set 17, 2008 11:16

Obrigado pela resposta e pelas boas-vindas. Só mais uma coisa. Posso afirmar que todo anel com elemento unidade é um anel comutativo?
Gostaria de saber "qual" definição de Corpo você usou. Estou dizendo isso porque no livro "Curso de Álgebra vol1" de Ábramo Hefez, a comutatividade da segunda operação está definida pra qualquer anel, já no livro do Castrucci, um anel que goze da comutatividade na segunda operação é chamado anel comutativo. O resto da prova eu entendi. Muito obrigado.
juliomarcos
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Dom Set 14, 2008 00:29
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da Computação
Andamento: cursando

Re: [Corrijam] Todo Corpo é domínio de Integridade

Mensagempor admin » Ter Set 23, 2008 17:22

Olá juliomarcos, boa-tarde!


juliomarcos escreveu:Posso afirmar que todo anel com elemento unidade é um anel comutativo?

Não. Um contra-exemplo é o anel Mat_2(\Re), +, \cdot (o conjunto de todas as matrizes reais 2x2). Cuja unidade é:
1 = \begin{bmatrix}
   1 & 1  \\ 
   0 & 1 
\end{bmatrix}
Este anel não é comutativo.

juliomarcos escreveu:Gostaria de saber "qual" definição de Corpo você usou.


Sobre a definição de corpo, citarei duas que usei, uma dada em aula, cuja bibliografia indicarei em seguida:

Definição: Um anel comutativo com unidade é chamado de corpo se todo elemento a \in A, a \neq 0, é inversível (isto é, existe x \in A tal que ax=1).
Notação: x é único e indicado por x = a^{-1}.

Bibliografia do curso:

1. Herstein, I.N., "Topics in Algebra", 2nd Edition, John Wiley & Sons (tem tradução).
2. Dean, R.A., "Elements of Abstract Algebra", Wiley International Edition, John Wiley and Sons.
3. Gonçalves, A., "Introdução à Álgebra", IMPA.
4. Lang, S., "Algebraic Structures", Addison - Wesley Publishing Company (tem tradução).
5. Fraleigh, J.B., "A first course in abstract algebra", Addison Wesley.



Eu tenho o livro do Adilson, o 3º da lista, cuja definição é a seguinte:

Definição: Se um domínio de integridade A, +, \cdot satisfaz a propriedade:
\forall x \in A, x\neq 0, \exists y \in A tal que x\cdot y = y \cdot x = 1,
dizemos que A, +, \cdot é um corpo.

Lembrando que antes há a seguinte definição para domínio de integridade:
Se A, +, \cdot é um anel comutativo, com unidade e sem divisores de zero, dizemos que A, +, \cdot é um domínio de integridade.

Até mais!
Fábio Sousa
Equipe AjudaMatemática.com
| bibliografia | informações gerais | arquivo de dúvidas | desafios

"O tolo pensa que é sábio, mas o homem sábio sabe que ele próprio é um tolo."
William Shakespeare
Avatar do usuário
admin
Colaborador Administrador - Professor
Colaborador Administrador - Professor
 
Mensagens: 885
Registrado em: Qui Jul 19, 2007 10:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática IME-USP
Andamento: formado

Re: [Corrijam] Todo Corpo é domínio de Integridade

Mensagempor juliomarcos » Qua Set 24, 2008 01:03

Agora e depois de ter tirado umas dúvidas com a professora, compreendi totalmente o assunto. Muito Obrigado.
juliomarcos
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Dom Set 14, 2008 00:29
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da Computação
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.