por matlearn » Dom Mar 20, 2011 23:40
Bom dia a todos!
Estou com umas dúvidas. Gostava que me pudessem ajudar num exercício.
È assim, tendo um espaço vectorial e seja f : E ---> E , um endomorfismo de E satisfazendo o seguinte, como posso afirmar que
u | f(v) = - f(u) | v ( produto vectorial)
Pensei no seguinte raciocionio:
Tendo este endomorfismo, e sendo de uma diagonalizacao de uma matriz anti simétrica ( A= - A^t ), temos
f(v)= x v , por ser auto adjunta e f(u) = x u , em que x é valor proprio.
Entao igualando,
u | x v = - x u | v , o que concluo que u | v = 0
Será que o raciocionio está bem aplicado? O que dizem?
Já agora, como posso saber o núcleo de f e a imagem de f ?
Nas soluções está que a intersecção do núcleo de f com a imagem de f é o conjunto vazio.
HELPPPPPPPPP!!!!!!!!!!!!!!!!!!!!!!!!!!!!
-
matlearn
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Dom Mar 20, 2011 15:50
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
Voltar para Geometria Analítica
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Algebra Linear] Matriz Simetrica
por fabriel » Sex Mai 31, 2013 17:07
- 5 Respostas
- 6500 Exibições
- Última mensagem por Molina

Sex Mai 31, 2013 22:25
Álgebra Linear
-
- [INTEGRAL] Integração e anti-derivada
por bencz » Sex Mar 18, 2016 10:42
- 1 Respostas
- 3982 Exibições
- Última mensagem por anselmojr97

Dom Mar 20, 2016 17:09
Cálculo: Limites, Derivadas e Integrais
-
- [Conjuntos] Diferença simétrica
por Incognite » Sáb Mar 10, 2018 18:22
- 1 Respostas
- 3435 Exibições
- Última mensagem por adauto martins

Qui Abr 26, 2018 20:15
Conjuntos
-
- Provar que Diferença Simétrica é Associativa!
por Almar » Qui Fev 04, 2010 15:33
- 2 Respostas
- 7347 Exibições
- Última mensagem por Incognite

Sáb Mar 10, 2018 19:27
Conjuntos
-
- [MATRIZ] Como acho o determinante dessa matriz
por LAZAROTTI » Qui Mai 03, 2012 00:38
- 4 Respostas
- 6920 Exibições
- Última mensagem por Russman

Qui Mai 03, 2012 01:56
Matrizes e Determinantes
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Unesp - 95 Números Complexos
Autor:
Alucard014 - Dom Ago 01, 2010 18:22
(UNESP - 95) Seja L o Afixo de um Número complexo

em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.
Assunto:
Unesp - 95 Números Complexos
Autor:
MarceloFantini - Qui Ago 05, 2010 17:27
Seja

o ângulo entre o eixo horizontal e o afixo

. O triângulo é retângulo com catetos

e

, tal que

. Seja

o ângulo complementar. Então

. Como

, o ângulo que o afixo

formará com a horizontal será

, mas negativo pois tem de ser no quarto quadrante. Se

, então

. Como módulo é um:

.
Logo, o afixo é

.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.