• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Endomorfismo e matriz anti simetrica

Endomorfismo e matriz anti simetrica

Mensagempor matlearn » Dom Mar 20, 2011 23:40

Bom dia a todos!

Estou com umas dúvidas. Gostava que me pudessem ajudar num exercício.

È assim, tendo um espaço vectorial e seja f : E ---> E , um endomorfismo de E satisfazendo o seguinte, como posso afirmar que

u | f(v) = - f(u) | v ( produto vectorial)

Pensei no seguinte raciocionio:

Tendo este endomorfismo, e sendo de uma diagonalizacao de uma matriz anti simétrica ( A= - A^t ), temos

f(v)= x v , por ser auto adjunta e f(u) = x u , em que x é valor proprio.

Entao igualando,
u | x v = - x u | v , o que concluo que u | v = 0

Será que o raciocionio está bem aplicado? O que dizem?

Já agora, como posso saber o núcleo de f e a imagem de f ?

Nas soluções está que a intersecção do núcleo de f com a imagem de f é o conjunto vazio.

HELPPPPPPPPP!!!!!!!!!!!!!!!!!!!!!!!!!!!!
matlearn
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Dom Mar 20, 2011 15:50
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.