• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Vetores

Vetores

Mensagempor pmfae » Seg Mar 14, 2011 16:49

Olá pessoal, sou novo aqui e estou precisando de uma ajudinha...O problema é o seguinte: "Encontrar os números a1 e a2 tais que w=a1v1+a2v2, sendo v1=(1,-2,1), v2=(2,0,4) e w=(-4,-4,14)."
Tentei resolver multiplicando a1 e a2 pelas coordenadas e montando um sistema.Cheguei a a1=2 e a2=-3. O problema é que 2.1+4.(-3)\neq 14.
Se puderem me ajudar, agradeço...
Abraçoo
pmfae
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Seg Mar 14, 2011 16:27
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Computação
Andamento: cursando

Re: Vetores

Mensagempor LuizAquino » Seg Mar 14, 2011 17:02

pmfae escreveu:"Encontrar os números a1 e a2 tais que w=a1v1+a2v2, sendo v1=(1,-2,1), v2=(2,0,4) e w=(-4,-4,14)."


Isso resulta no sistema:
\begin{cases}
a_1 + 2a_2 = -4 \\
-2a_1 = -4 \\
a_1 + 4a_2 = 14 \\
\end{cases}

Note que esse sistema não tem solução! Isso significa que w não pode ser escrito como combinação linear de v1 e v2.

Para que o sistema tivesse solução seria necessário, por exemplo, que w=(-4,-4,-10). Desse modo, aconteceria \mathbf{w} = 2\mathbf{v_1} -3\mathbf{v_2}.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Vetores

Mensagempor pmfae » Seg Mar 14, 2011 17:10

Hum...foi o que eu pensei, mas é mais provável que eu estivesse errado do que o professor e o livro do qual ele copiou ahushuhasuhauhasu...
Mas então ok, muitíssimo obrigado!
pmfae
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Seg Mar 14, 2011 16:27
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Computação
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}