por brunnomaia » Dom Mar 06, 2011 11:07
Pessoal sou novo no fórum e este é meu primeiro tópico, desculpe se o tópico estiver no local errado.
Eu tenho 32 anos e estou querendo depois de velho tentar vestibular para Engenharia Civil, O fato é que estou com algumas apostilas de cursinho fazendo exercícios e esbarrei logo de cara na questão abaixo:
O fato é que a anos eu não vejo matemática então não sei nem por onde começar..
Eu tenho o resultado porém não consigo chegar nele, até imagino que seja bem simples mas minha cabeça não consegue puxar pela memória o que aprendi a anos atrás.
- Anexos
-

- Equação.JPG (5.77 KiB) Exibido 1696 vezes
-
brunnomaia
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Dom Mar 06, 2011 10:59
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por LuizAquino » Dom Mar 06, 2011 11:40
Você quer calcular

.
Portanto, você quer o valor de

.
Primeiro, vamos simplificar um pouco essa raiz.

Usando o produto notável

, nós temos que:

Como
a e
b são números positivos, podemos efetuar a simplificação entre a raiz quadrada e a potência 2.


Usando o produto notável

, temos que:


Agora, basta substituir os valores para
a e
b:
SugestãoAcredito que o tópico a seguir deva lhe interessar:
Aulas de Matemática no YouTubeviewtopic.php?f=120&t=3818
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por brunnomaia » Dom Mar 06, 2011 11:53
Muito Obrigado!
Eu estava tentando simplificar desde o começo substituindo o b por 1 , não lembrava dos produtos notáveis!
-
brunnomaia
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Dom Mar 06, 2011 10:59
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Dúvida - resolução função !
por jamiel » Qui Mai 26, 2011 18:07
- 11 Respostas
- 5622 Exibições
- Última mensagem por jamiel

Qui Mai 26, 2011 22:31
Funções
-
- Função Sen - Dúvida Resolução
por jamiel » Sáb Jul 02, 2011 17:47
- 7 Respostas
- 4231 Exibições
- Última mensagem por jamiel

Sáb Jul 02, 2011 19:42
Funções
-
- Função Exponencial - Dúvida na resolução!
por jamiel » Dom Mai 15, 2011 14:09
- 1 Respostas
- 4686 Exibições
- Última mensagem por Claudin

Dom Mai 15, 2011 14:21
Funções
-
- Retângulo - função(resolução-dúvida)
por jamiel » Seg Mai 23, 2011 14:44
- 2 Respostas
- 3919 Exibições
- Última mensagem por jamiel

Seg Mai 23, 2011 21:39
Funções
-
- Dúvida - resolução(função inversa)
por jamiel » Ter Jun 14, 2011 18:49
- 1 Respostas
- 1381 Exibições
- Última mensagem por DanielFerreira

Qui Jun 16, 2011 16:00
Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.