por geraldogai » Qui Fev 17, 2011 13:30
Boa tarde
gostaria de saber se existe uma funçao para calculo de volume de um silo
sendo que um silo é igual ao cilindro mais o cone.
Obrigado
-
geraldogai
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Qui Fev 17, 2011 13:17
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: eletronica
- Andamento: formado
por Molina » Qui Fev 17, 2011 16:09
Boa tarde, Geraldo.
Quando você diz função você nao quer dizer FÓRMULA?
Pois se você quer uma fórmula para calcular o volume do silo basta somar as fórmulas do volume do cilindro e do cone.
Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
por geraldogai » Qui Fev 17, 2011 17:08
Boa tarde Diego
tenho um sensor de pressao que mede o volume do silo.
porem quando estou com produto na parte de baixo ou seja no cone tenho um valor medido em miliampere.
quando o silo vai enchendo e ultrapassa a area do cone ou seja entra na parte cilindrica o valor medido nao segue uma equaçao reta.
por isto o valor de leitura nao bate com a quantidade de produto em litros.
Obrigado
-
geraldogai
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Qui Fev 17, 2011 13:17
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: eletronica
- Andamento: formado
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Volume] Volume de caixa para carrinho de mão
por MateusDantas1 » Seg Nov 05, 2012 20:12
- 0 Respostas
- 2605 Exibições
- Última mensagem por MateusDantas1

Seg Nov 05, 2012 20:12
Geometria Espacial
-
- [Integral] para calcular volume
por neoreload » Sex Nov 21, 2014 05:26
- 1 Respostas
- 4527 Exibições
- Última mensagem por felipederaldino

Qua Nov 26, 2014 11:16
Cálculo: Limites, Derivadas e Integrais
-
- Integral para calcular o volume
por neoreload » Sex Mar 13, 2015 05:11
- 1 Respostas
- 3965 Exibições
- Última mensagem por Russman

Sex Mar 13, 2015 17:00
Cálculo: Limites, Derivadas e Integrais
-
- onde a funcao tem concavidade para cima e para baixo?
por tumiattibrz » Sáb Jun 04, 2011 01:00
- 4 Respostas
- 4392 Exibições
- Última mensagem por Fabio Cabral

Seg Jun 06, 2011 23:54
Cálculo: Limites, Derivadas e Integrais
-
- Função volume
por thaisale » Ter Set 27, 2016 22:41
- 0 Respostas
- 4494 Exibições
- Última mensagem por thaisale

Ter Set 27, 2016 22:41
Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.