por freddrago » Qua Fev 16, 2011 13:12
Considerando como comprimento da secante AB a variavel "X", e o comprimento da flecha FF' a variavel "Y", qual seria a equação para determinar o raio da circunferencia?
Grato
Fred.
-
freddrago
- Novo Usuário
-
- Mensagens: 3
- Registrado em: Qua Fev 16, 2011 13:00
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia
- Andamento: formado
por freddrago » Qua Fev 16, 2011 22:08
Considerando que todo triangulo inscrito, com um dos catetos igual ao diametro é retangulo. Extendendo-se a flecha, temos uma linha que corta o centro da circunferencia que chamamos de ponto C.
desta forma temos o triangulo ACF' e outros dois triangulos semalhantes, AFF' e ACF, que representarei da seguinte forma:
AC = a
CF' = b
F'A = c
AF = x/2
FF' = y
F'A = c
AC = a
CF = e
AF = x/2
pelo teorema de tales, e por algum motivo estou errando aqui teriamos:
a/b = (X/2)/y = a/e
b/c = y/c = e/(x/2)
a/c = (x/2)/c = a/(x/2)
e por Pitagoras, temos:
substituindo em
considerando:
- Não sei se esta redução é coerente. é aqui que estou travando...
se alguem puder ajudar....
-
freddrago
- Novo Usuário
-
- Mensagens: 3
- Registrado em: Qua Fev 16, 2011 13:00
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia
- Andamento: formado
por Renato_RJ » Qua Fev 16, 2011 22:41
Boa noite Fred, tudo em paz ??
Seguinte, no seu desenho você desenhou uma corda indo do ponto C ao ponto A e depois outra que ia do ponto A ao ponto F'. Beleza, reparou que esse segmento CAF' forma um semicírculo ? Então, podemos afirmar que o ângulo CÂF' é reto, isto é, mede 90º pois todos os ângulos que subtendem um semicírculo são retos.
Logo, usando as suas definições:
Mas, como o ângulo CÂF' é reto e o segmento AF mede
então teremos um triângulo retângulo CAF onde:
Fazendo CF = CF (meio obvio essa):
Se houver erros, me perdoe, posso ter escorregado em alguma definição por aí... rss...
Abraços,
Renato.
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
-
Renato_RJ
- Colaborador Voluntário
-
- Mensagens: 306
- Registrado em: Qui Jan 06, 2011 15:47
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado em Matemática
- Andamento: cursando
por LuizAquino » Qui Fev 17, 2011 07:56
freddrago escreveu:Considerando que todo triangulo inscrito, com um dos catetos igual ao diametro é retangulo. Extendendo-se a flecha, temos uma linha que corta o centro da circunferencia que chamamos de ponto C.
- circulo_2.jpg (6.29 KiB) Exibido 3879 vezes
Correção: A
hipotenusa deve ser igual ao diâmetro e não o cateto.
Para ser mais preciso, só podemos inscrever um triângulo retângulo em uma circunferência se a hipotenusa dele for igual ao diâmetro da circunferência. Isso deve-se ao fato apontado pelo colega Renato.
Renato_RJ escreveu:(...) reparou que esse arco CAF' forma um semicírculo ? Então, podemos afirmar que o ângulo CÂF' é reto, isto é, mede 90º pois todos os ângulos que subtendem um semicírculo são retos.
No exercício, você está considerando que AF=FB=x/2 (F é ponto médio de AB=x), FF'=y e FF' é perpendicular a AB.
Como vimos, o triângulo CAF' é retângulo. Aplicando a relação métrica que envolve a altura do triângulo retângulo e as projeções dos catetos sobre a hipotenusa, temos que
Lembrando que
, nós obtemos que
. Isolando r, nós obtemos
.
-
LuizAquino
- Colaborador Moderador - Professor
-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por Renato_RJ » Qui Fev 17, 2011 08:06
LuizAquino escreveu:No exercício, você está considerando que AF=FB=x/2 (F é ponto médio de AB=x), FF'=y e FF' é perpendicular a AB.
Como vimos, o triângulo CAF' é retângulo.
Aplicando a relação métrica que envolve a altura do triângulo retângulo e as projeções dos catetos sobre a hipotenusa, temos que
Lembrando que
, nós obtemos que
. Isolando r, nós obtemos
.
Sabia que eu tinha esquecido alguma coisa.. Hehhehe.. Muito obrigado Luiz
Eu tinha esquecido completamente da relação métrica....
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
-
Renato_RJ
- Colaborador Voluntário
-
- Mensagens: 306
- Registrado em: Qui Jan 06, 2011 15:47
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado em Matemática
- Andamento: cursando
por freddrago » Qui Fev 17, 2011 16:39
Muito obrigado...
estava fazendo uma lambança só...
-
freddrago
- Novo Usuário
-
- Mensagens: 3
- Registrado em: Qua Fev 16, 2011 13:00
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia
- Andamento: formado
Voltar para Geometria Plana
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Determinar a equação geral da elipse com centro na origem, q
por juniocs » Qua Mai 29, 2013 15:31
- 2 Respostas
- 13435 Exibições
- Última mensagem por juniocs
Sáb Jun 08, 2013 17:18
Geometria Analítica
-
- Centro e raio da esfera, determine-os.
por apotema2010 » Qua Fev 09, 2011 18:48
- 1 Respostas
- 4755 Exibições
- Última mensagem por LuizAquino
Qua Fev 09, 2011 19:12
Geometria Analítica
-
- [circunferência] determinar a equação
por Fabio Wanderley » Qui Abr 26, 2012 11:23
- 1 Respostas
- 3095 Exibições
- Última mensagem por LuizAquino
Qui Abr 26, 2012 16:16
Geometria Analítica
-
- uma circunferência de centro no ponto....
por willwgo » Qua Abr 13, 2011 17:57
- 3 Respostas
- 5812 Exibições
- Última mensagem por FilipeCaceres
Qui Abr 14, 2011 16:18
Geometria Analítica
-
- Qual é o centro da circunferência?
por David_Estudante » Sáb Mai 25, 2013 17:46
- 1 Respostas
- 982 Exibições
- Última mensagem por arthurvct
Sex Mai 31, 2013 15:41
Geometria Analítica
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois
2°) Admitamos que
, seja verdadeira:
(hipótese da indução)
e provemos que
Temos: (Nessa parte)
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que
seja verdadeiro, e pretendemos provar que também é verdadeiro para
.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:
, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como
é
a
, e este por sua vez é sempre
que
, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.