Regras do fórum
A classificação destes desafios em fáceis, médios e difíceis, é apenas ilustrativa.
Eventualmente, o que pode ser difícil para a maioria, pode ser fácil para você e vice-versa.
por admin » Sáb Jul 21, 2007 01:19
Acerca de Gauss, o famoso matemático, conta-se uma história da época em que era estudante. Seu professor confiou à turma a tarefa de descobrir qual era a soma dos números de 1 a 100. O objetivo era basicamente mantê-los ocupados por longo tempo. Para surpresa do professor, Gauss forneceu a resposta em apenas alguns instantes. Você conseguiria descobrir o método utilizado, sem partir de alguma fórmula já conhecida?
-

admin
- Colaborador Administrador - Professor

-
- Mensagens: 885
- Registrado em: Qui Jul 19, 2007 10:58
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática IME-USP
- Andamento: formado
por Tmac » Qui Set 27, 2007 03:10
Dividindo ao meio, os extremos equidistantes vao dar sempre o mesmo numero (51), multiplicando pelo numero de pares 51 x 50 = 2550.
É isso?
-
Tmac
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Qui Set 27, 2007 02:55
- Área/Curso: Estudante
- Andamento: cursando
por admin » Qui Set 27, 2007 03:23
Tmac escreveu:Dividindo ao meio, os extremos equidistantes vao dar sempre o mesmo numero (51), multiplicando pelo numero de pares 51 x 50 = 2550.
É isso?
Olá!
Conforme você escreveu, cada soma dos extremos eqüidistantes de uma metade realmente dará 51.
Mas, da outra metade dará 151.
Tmac, seja bem-vindo!
Um abraço.
-

admin
- Colaborador Administrador - Professor

-
- Mensagens: 885
- Registrado em: Qui Jul 19, 2007 10:58
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática IME-USP
- Andamento: formado
por jose reis pimenta » Dom Nov 11, 2007 20:42
A história diz que Gaus escreveu duas seqüências, uma sobre a outra, sendo uma em ordem crescente e outra decrescente, assim:
1 + 2 + 3 + ............................98 + 99 + 100
100+ 99 + 98 + .......................... 3 + 2 + 1, e somando termo a termo, verificou-se 100 parcelas cuja soma era 101, daí multiplicou 101 por 100, como trabalhara duas seqüências dividiu o resultado por 2, encontrando como resultado 5050.
-
jose reis pimenta
- Novo Usuário

-
- Mensagens: 8
- Registrado em: Dom Nov 11, 2007 19:55
- Área/Curso: Estudante
- Andamento: cursando
Voltar para Desafios Médios
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Gauss
por apotema2010 » Seg Mar 01, 2010 09:58
- 1 Respostas
- 1789 Exibições
- Última mensagem por Douglasm

Sex Mar 05, 2010 19:21
Matrizes e Determinantes
-
- Ainda em Gauss
por apotema2010 » Seg Mar 01, 2010 10:03
- 1 Respostas
- 1643 Exibições
- Última mensagem por Douglasm

Qui Mar 04, 2010 12:39
Matrizes e Determinantes
-
- Metodo de Gauss
por Jaison Werner » Seg Jan 10, 2011 19:11
- 3 Respostas
- 2858 Exibições
- Última mensagem por Renato_RJ

Ter Jan 18, 2011 23:42
Cálculo: Limites, Derivadas e Integrais
-
- Método de Gauss Jordan
por Claudin » Sex Ago 26, 2011 03:00
- 2 Respostas
- 4676 Exibições
- Última mensagem por LuizAquino

Dom Ago 28, 2011 22:51
Álgebra Elementar
-
- [Eliminação de Gauss] Sistemas
por cris_minims » Qua Nov 09, 2011 15:58
- 1 Respostas
- 2135 Exibições
- Última mensagem por MarceloFantini

Qua Nov 09, 2011 17:22
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.