• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Escalonamento

Escalonamento

Mensagempor baianinha » Seg Jan 24, 2011 19:32

Olá pessoal,
preciso que alguém explique como faço para escalonar este sistema aqui:
2x -2y +3z -2w=0
-y +z =0
5x-2y -3z -2w =0
baianinha
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Qui Dez 16, 2010 12:15
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: matematica
Andamento: cursando

Re: Escalonamento

Mensagempor fmach » Ter Jan 25, 2011 16:47

2x -2y +3z -2w=0
-y +z =0
5x-2y -3z -2w =0

em primeiro lugar, o sistema completo seria:
2x - 2y + 3z - 2w = 0
0x - 1y + 1z + 0w = 0
5x - 2y - 3z - 2w = 0

depois, constrói a matriz dos coeficientes (os valores antes das incógnitas):

2 -2 3 -2 | 0
0 -1 1 0 | 0
5 -2 -3 -2 | 0

a matriz deve ficar dentro de parêntesis rectos. Neste caso é a chamada matriz ampliada, estendida, etc (coeficientes e termos independentes). Neste caso, não me dei ao trabalho:)
Agora é escalonar. Caso não o saibas fazer, precisas de rever a matéria pq não é possível explicar-te os diversos resultados que podes obter e a sua interpretação apenas num post. De qualquer forma só podes fazer 3 interpretações dos resultados. Ou o sistema é possível e determinado (apenas uma solução), possível e indeterminado (várias soluções) ou impossível.
Se precisares de alguma coisa, contacta-me.

Cumprimentos.
fmach
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Ter Jan 25, 2011 16:31
Formação Escolar: EJA
Área/Curso: Engenharia Jogos
Andamento: cursando

Re: Escalonamento

Mensagempor baianinha » Qua Jan 26, 2011 22:12

fmach escreveu:2x -2y +3z -2w=0
-y +z =0
5x-2y -3z -2w =0

em primeiro lugar, o sistema completo seria:
2x - 2y + 3z - 2w = 0
0x - 1y + 1z + 0w = 0
5x - 2y - 3z - 2w = 0

depois, constrói a matriz dos coeficientes (os valores antes das incógnitas):

2 -2 3 -2 | 0
0 -1 1 0 | 0
5 -2 -3 -2 | 0

a matriz deve ficar dentro de parêntesis rectos. Neste caso é a chamada matriz ampliada, estendida, etc (coeficientes e termos independentes). Neste caso, não me dei ao trabalho:)
Agora é escalonar. Caso não o saibas fazer, precisas de rever a matéria pq não é possível explicar-te os diversos resultados que podes obter e a sua interpretação apenas num post. De qualquer forma só podes fazer 3 interpretações dos resultados. Ou o sistema é possível e determinado (apenas uma solução), possível e indeterminado (várias soluções) ou impossível.
Se precisares de alguma coisa, contacta-me.

Cumprimentos.


olá colega!
Eu consigo escalonar. verifique meu escalonamento eu conseguir fazer até aki.Preciso que me ajude daqui para frente? tenho que continuar a escalonar? O Q FAÇO?

cheguei nesse sistema e agora?
1 -1 3/2 1 -1
0 -1 1 0 0
0 0 15/2 0 0
baianinha
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Qui Dez 16, 2010 12:15
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: matematica
Andamento: cursando

Re: Escalonamento

Mensagempor fmach » Qui Jan 27, 2011 00:10

baianinha escreveu:
fmach escreveu:2x -2y +3z -2w=0
-y +z =0
5x-2y -3z -2w =0

em primeiro lugar, o sistema completo seria:
2x - 2y + 3z - 2w = 0
0x - 1y + 1z + 0w = 0
5x - 2y - 3z - 2w = 0

depois, constrói a matriz dos coeficientes (os valores antes das incógnitas):

2 -2 3 -2 | 0
0 -1 1 0 | 0
5 -2 -3 -2 | 0

a matriz deve ficar dentro de parêntesis rectos (ou curvos). Neste caso é a chamada matriz ampliada, estendida, etc (coeficientes e termos independentes). Neste caso, não me dei ao trabalho:)
Agora é escalonar. Caso não o saibas fazer, precisas de rever a matéria pq não é possível explicar-te os diversos resultados que podes obter e a sua interpretação apenas num post. De qualquer forma só podes fazer 3 interpretações dos resultados. Ou o sistema é possível e determinado (apenas uma solução), possível e indeterminado (várias soluções) ou impossível.
Se precisares de alguma coisa, contacta-me.

Cumprimentos.


olá colega!
Eu consigo escalonar. verifique meu escalonamento eu conseguir fazer até aki.Preciso que me ajude daqui para frente? tenho que continuar a escalonar? O Q FAÇO?

cheguei nesse sistema e agora?
1 -1 3/2 1 -1
0 -1 1 0 0
0 0 15/2 0 0


eu cheguei a um valor diferente mas, admito que tendo em conta as horas, posso estar errado.
o valor que cheguei foi:

2 -2 3 -2 | 0
0 -1 1 0 | 0
0 0 -15/2 3 | 0

No entanto, neste caso não é muito importante. A matriz ESTÁ escalonada. Não sendo uma matriz quadrada, causa algumas dúvidas:)
O mais importante a retirar daqui é a conclusão quanto ao sistema.
Neste caso o sistema é possível e indeterminado. Assim sendo fica (segundo as minhas contas):

2x - 2y + 3z -2w = 0
- y + z = 0
- (15/2)z +3w = 0

Isto significa que se se tentar encontrar o valor de qualquer uma das variáveis, elas vão depender sempre das outras. Por exemplo:
w = (15/2 z) /3
z = y
Se pelo contrário se conseguisse algo como, por exemplo, w = 3, z = 4, o sistema seria possível e determinado.
Sem querer baralhar, tens 4 incógnitas e apenas três equações, ou seja, à partida, alguma delas vai depender de outra.
Espero ter ajudado e não baralhado.

Qualquer coisa, já sabes:)
fmach
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Ter Jan 25, 2011 16:31
Formação Escolar: EJA
Área/Curso: Engenharia Jogos
Andamento: cursando


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.