por gilzinha » Dom Jan 23, 2011 10:59
Um titulo teve seu vencimento antecipado em 277 dias, recebendo uma taxa de desconto de 19%aq. O valor atual deste titulo foi aplicado a taxa de juro de 71%aa,ficando aplicado de 13/01/2005 à 27/03/2006, resgantado-se então um montante de R$ 7.930. Determinar o valor nominal do titulo, e encontrar também qual a ataxa de juros equivalente ocorrida na operação de descontos realizada
-
gilzinha
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Dom Jan 23, 2011 09:35
- Formação Escolar: GRADUAÇÃO
- Área/Curso: administração
- Andamento: cursando
Voltar para Matemática Financeira
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- TAXA DE JUROS NOMINAL
por pamelasrodrigues » Qua Dez 01, 2010 12:06
- 0 Respostas
- 1182 Exibições
- Última mensagem por pamelasrodrigues

Qua Dez 01, 2010 12:06
Matemática Financeira
-
- Taxa nominal e Taxa Efetiva
por Danilo Dias Vilela » Qui Out 15, 2009 12:11
- 1 Respostas
- 9668 Exibições
- Última mensagem por marcelo ebm

Ter Nov 24, 2009 22:11
Matemática Financeira
-
- Taxa nominal e Taxa Efetiva
por MuitaGarra » Sáb Mar 24, 2012 11:38
- 1 Respostas
- 2393 Exibições
- Última mensagem por Fabiano Vieira

Dom Abr 22, 2012 18:53
Matemática Financeira
-
- DUVIDA - URGENTE (tx de juros equivalente)
por Lobato » Sex Fev 04, 2011 22:17
- 0 Respostas
- 1147 Exibições
- Última mensagem por Lobato

Sex Fev 04, 2011 22:17
Matemática Financeira
-
- Matematica Financeira - taxa de juros aparente e taxa real
por Patricia estudante » Dom Mai 20, 2012 18:55
- 0 Respostas
- 2179 Exibições
- Última mensagem por Patricia estudante

Dom Mai 20, 2012 18:55
Matemática Financeira
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.