por OtavioBonassi » Qui Jan 06, 2011 21:58
O número de soluções da equação (todos os logs estão na mesma base, base 10)

é :
a)0
b)1
c)2
d)3
e)4
Então, logo de cara o que eu fiz foi unir os dois logs antes do sinal de igual , então ficou assim :

Ai então podemos "cancelar" os dois logs e igualar

, e multiplicando temos que

, depois de um tempo ...

, e aí que chega o caô , como resolver essa função do 3° grau ?! Estou sem idéias de como destrinchar isso ?! E avaliem se o que eu fiz até agora tá certo, posso ter viajado em alguma passagem.
Abraço,
Otávio.
-
OtavioBonassi
- Usuário Dedicado

-
- Mensagens: 38
- Registrado em: Qua Jan 05, 2011 14:57
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Mecatrônica
- Andamento: cursando
por Pedro123 » Sex Jan 07, 2011 00:00
Fala cara, blz??
entao, realmente, se vc tentar desenvolver essa equação, da um conta meio grande. O truque é o seguinte:
Lembrar do fato que x² - 4 = (x +2)(x-2) que ai sai suave a questao, abraços, qualquer duvida estamos ai
-
Pedro123
- Usuário Parceiro

-
- Mensagens: 60
- Registrado em: Qui Jun 10, 2010 22:46
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Mecanica - 1° Período
- Andamento: cursando
por OtavioBonassi » Sex Jan 07, 2011 01:11
Pô cara, valeu mesmo !! Não tinha nem passado perto da minha cabeça tentar simplificar desse jeito , obrigado mesmo !! E a solução é "apenas 1 resposta".
Acho que isso significa que aquela equação

etc etc tem só 2 raízes reais ,mesmo sendo do 3° grau ? Ela só corta o eixo x em 2 pontos então ... tava fixado com a idéia de que "uma equação do 3o grau tem que ter 3 raízes".
-
OtavioBonassi
- Usuário Dedicado

-
- Mensagens: 38
- Registrado em: Qua Jan 05, 2011 14:57
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Mecatrônica
- Andamento: cursando
por Pedro123 » Sex Jan 07, 2011 01:20
Rapaz, na verdade não, realmente uma eq de 3 grau, possui 3 raizes, sendo que elas podem ser iguais (multiplicidade > 1 ou diferentes, tendo no caso três raizes diferentes,) na verdade, quando vc achou "apenas 1 solução" nao se refere à expressao do 3 grau, mas sim à solução da eq logaritmica, que é definida pelas soluçoes da equação do 3 grau, e pela condição de existencia dos logs. abraços, se não me engano é isso
-
Pedro123
- Usuário Parceiro

-
- Mensagens: 60
- Registrado em: Qui Jun 10, 2010 22:46
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Mecanica - 1° Período
- Andamento: cursando
por OtavioBonassi » Sex Jan 07, 2011 01:25
mas se por exemplo,se ao invés de ter simplificado e transformado a equação em uma do 2o grau eu tivesse deixado ela como sendo do 3o grau ,teoricamente daria certo também ,nao é ? E nesse caso eu teria 3 respostas ,ao invés de 2 ,mas mesmo assim a resposta teria que continuar sendo "apenas 1 resposta" ... voce sabe porque cara ? Será que se eu resolvesse essa eq. do 3o grau dariam 2 respostas iguais ou sei lá ,uma seria imcompatível ?
-
OtavioBonassi
- Usuário Dedicado

-
- Mensagens: 38
- Registrado em: Qua Jan 05, 2011 14:57
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Mecatrônica
- Andamento: cursando
por Pedro123 » Sex Jan 07, 2011 01:47
então cara, estava "brincando" aqui, e descobri que aquela equação possui 2 raizes iguais a -2. faça o seguinte, encontre as raizes da equação do 2º grau (a simplificada), essas serão 2 das raizes da eq do 3º grau. depois pegue a eq do terceiro grau e divida por x - (qualquer uma daz raizes, pela divisão de polinomios sabe?) vc vai chegar ou na mesma eq do segundo grau anterior, ou em uma diferente com 2 raizes iguais a -2, logo com delta = 0 , logo a eq possui sim 3 raizes, porem, 2 iguais.
abraços
Editado pela última vez por
Pedro123 em Sex Jan 07, 2011 01:53, em um total de 1 vez.
-
Pedro123
- Usuário Parceiro

-
- Mensagens: 60
- Registrado em: Qui Jun 10, 2010 22:46
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Mecanica - 1° Período
- Andamento: cursando
por OtavioBonassi » Sex Jan 07, 2011 01:51
Maravilha cara !!! Mandou muito bem agora ... "luxou" mesmo ! Agora consegui ter segurança que os dois caminhos levam pro mesmo lugar haha ,valeu !
Abração ,
Otávio
-
OtavioBonassi
- Usuário Dedicado

-
- Mensagens: 38
- Registrado em: Qua Jan 05, 2011 14:57
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Mecatrônica
- Andamento: cursando
por Pedro123 » Sex Jan 07, 2011 01:55
kkk que isso, hsuahsu luxou foi massa kkkk qq coisa, tamos ai abras
-
Pedro123
- Usuário Parceiro

-
- Mensagens: 60
- Registrado em: Qui Jun 10, 2010 22:46
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Mecanica - 1° Período
- Andamento: cursando
por Renato_RJ » Sex Jan 07, 2011 15:12
Posso estar enganado, mas a sua equação no final não ficaria assim ?

Então, temos:

Estou certo ??
Editado pela última vez por
Renato_RJ em Sex Jan 07, 2011 15:20, em um total de 1 vez.
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
-

Renato_RJ
- Colaborador Voluntário

-
- Mensagens: 306
- Registrado em: Qui Jan 06, 2011 15:47
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado em Matemática
- Andamento: cursando
por OtavioBonassi » Sex Jan 07, 2011 15:19
então cara, na verdade voce teria isso aqui :

ai voce passaria o (x+2) pro outro lado dividindo, e sobraria :

o que vira uma eq. do segundo grau com 2 raízes !
O que eu tava discutindo com o Pedro123 é se tanto a equação do 3o grau quanto a do 2o levariam pro mesmo lugar ,e o Pedro123 comprovou que levam sim , só que é milhoes de vezes mais facil fazer uma do 2o grau
-
OtavioBonassi
- Usuário Dedicado

-
- Mensagens: 38
- Registrado em: Qua Jan 05, 2011 14:57
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Mecatrônica
- Andamento: cursando
por Renato_RJ » Sex Jan 07, 2011 15:23
Boa sacada passar o

para o outro lado da igualdade dividindo, facilita bastante o trabalho... Não tinha percebido isso, simplesmente analisei toda a equação...
Obrigado pela orientação.
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
-

Renato_RJ
- Colaborador Voluntário

-
- Mensagens: 306
- Registrado em: Qui Jan 06, 2011 15:47
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado em Matemática
- Andamento: cursando
por MarceloFantini » Sex Jan 07, 2011 21:06
Vocês estão lembrando as condições de existência? Satisfazer a equação logarítmica implica também que x satisfaça as condições de existência dos logaritmos.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por OtavioBonassi » Sex Jan 07, 2011 23:42
Exatamente por lembrar dessas condições que só tem 1 resposta possível hehe
Das duas raízes encotradas ,uma era +2 e a outra era um outro número ,portanto só temos 1 resposta .
-
OtavioBonassi
- Usuário Dedicado

-
- Mensagens: 38
- Registrado em: Qua Jan 05, 2011 14:57
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Mecatrônica
- Andamento: cursando
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Função Logaritmica
por nessitahfl » Qui Abr 17, 2014 11:06
- 3 Respostas
- 2437 Exibições
- Última mensagem por nessitahfl

Ter Abr 22, 2014 10:48
Funções
-
- Função Logarítmica
por Carlos28 » Sex Mar 13, 2015 10:02
- 2 Respostas
- 2328 Exibições
- Última mensagem por jefferson0209

Ter Set 22, 2015 18:36
Logaritmos
-
- Função logarítmica
por zenildo » Qua Jul 15, 2015 12:26
- 1 Respostas
- 1950 Exibições
- Última mensagem por nakagumahissao

Qui Jul 16, 2015 14:37
Logaritmos
-
- Função Logarítmica - Urgente!
por Asustek27 » Dom Mar 14, 2010 19:24
- 2 Respostas
- 2557 Exibições
- Última mensagem por Asustek27

Seg Mar 15, 2010 15:25
Logaritmos
-
- (AMAN) função logaritmica
por natanskt » Sex Out 29, 2010 10:27
- 1 Respostas
- 1447 Exibições
- Última mensagem por DanielFerreira

Qui Nov 18, 2010 17:46
Logaritmos
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Proporcionalidade
Autor:
silvia fillet - Qui Out 13, 2011 22:46
Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Sáb Out 15, 2011 10:25
POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?
P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50
P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25
P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833
4/6 =10/15 =14/21 RAZÃO = 2/3
SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA
Assunto:
Proporcionalidade
Autor:
ivanfx - Dom Out 16, 2011 00:37
utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.
Assunto:
Proporcionalidade
Autor:
Marcos Roberto - Dom Out 16, 2011 18:24
Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.
Você conseguiu achar o dia em que caiu 15 de novembro de 1889?
Assunto:
Proporcionalidade
Autor:
deiasp - Dom Out 16, 2011 23:45
Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 06:23
Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 07:18
Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 07:40
Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias
44242:7 = 6320 + resto 2
è assim, nâo sei mais sair disso.
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 10:24
que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta
Assunto:
Proporcionalidade
Autor:
Kiwamen2903 - Seg Out 17, 2011 19:43
Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:
De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.
De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.
De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.
Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.