por joaos92 » Ter Dez 14, 2010 15:29
Boa tarde, estou resolvendo esse exercício:

Estou considerando as seguintes probabilidades:
P1: F(2004) -> F(2006) -> T(2008) = 95/100 * 4/100
P2: F(2004) -> T(2006) -> T(2008) = 4/100 - 95/100
P3: F(2004) -> F(2006) -> F(2008) = 95/100 * 95/100
P4: F(2004) -> T(2006) -> F(2008) = 4/100 * 2/100
Então a probabilidade de uma área de floresta (F) em 2004 virar área de terra exposta(T) em 2008 seria P1+P2+P3+P4??
Desse modo o resultado não está saindo igual ao gabarito.
Agradeço desde já.
-
joaos92
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Ter Dez 14, 2010 15:06
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: sistemas de informação
- Andamento: formado
por gichan » Qui Dez 16, 2010 08:00
joaos92 escreveu:Boa tarde, estou resolvendo esse exercício:
Estou considerando as seguintes probabilidades:
P1: F(2004) -> F(2006) -> T(2008) = 95/100 * 4/100
P2: F(2004) -> T(2006) -> T(2008) = 4/100 - 95/100
P3: F(2004) -> F(2006) -> F(2008) = 95/100 * 95/100
P4: F(2004) -> T(2006) -> F(2008) = 4/100 * 2/100
Os dois primeiros casos que vc analisou estão certos, exceto por aquele menos ali, que na verdade é um vezes.
O enunciado pediu a probabilidade da floresta se tornar em 2008, no final das contas, terra exposta. Sendo assim, as probabilidades P3 e P4 não devem ser somadas porque elas não atendem ao caso pedido no enunciado (em 2008, elas permanecem florestas).
Mas a ideia de somar as probabilidades que começam em F e terminam em T está correta. Faltou apenas acrescentar outra probabilidade: F(2004) -> A(2006) -> T(2008).
E aí, go go contas! =)
-

gichan
- Usuário Ativo

-
- Mensagens: 13
- Registrado em: Seg Jul 19, 2010 15:33
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Programação
- Andamento: formado
por joaos92 » Qui Dez 16, 2010 11:25
Ahh sim, agora deu certo!
Aquele sinal de menos ali deve ter sido erro de digitação e eu não tinha pensado nessa outra possibilidade citada.
Obrigado novamente.
-
joaos92
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Ter Dez 14, 2010 15:06
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: sistemas de informação
- Andamento: formado
por gichan » Qui Dez 16, 2010 12:21
joaos92 escreveu:Ahh sim, agora deu certo!
Aquele sinal de menos ali deve ter sido erro de digitação e eu não tinha pensado nessa outra possibilidade citada.
Obrigado novamente.
Imaginei que tivesse sido de erro de digitação.

Mas que bom que vc entendeu!
=**
-

gichan
- Usuário Ativo

-
- Mensagens: 13
- Registrado em: Seg Jul 19, 2010 15:33
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Programação
- Andamento: formado
Voltar para Estatística
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Probabilidade dentro de intervalo
por ianjsu » Sáb Mar 29, 2014 01:08
- 3 Respostas
- 3309 Exibições
- Última mensagem por Ursula Silva

Sáb Mar 29, 2014 23:14
Probabilidade
-
- [Probabilidade] peças dentro do padrão em três lotes
por leandrocf » Sex Jul 15, 2016 12:56
- 0 Respostas
- 3143 Exibições
- Última mensagem por leandrocf

Sex Jul 15, 2016 12:56
Probabilidade
-
- Meter dentro da raiz
por seixas » Seg Ago 22, 2011 13:58
- 2 Respostas
- 2021 Exibições
- Última mensagem por seixas

Seg Ago 22, 2011 17:15
Polinômios
-
- Área dentro de um octógono
por anfran1 » Dom Ago 19, 2012 12:06
- 3 Respostas
- 2409 Exibições
- Última mensagem por anfran1

Dom Nov 17, 2013 10:34
Geometria Plana
-
- [ângulo dentro da circunferência]
por Ederson_ederson » Qua Ago 12, 2015 17:43
- 3 Respostas
- 2142 Exibições
- Última mensagem por nakagumahissao

Seg Ago 17, 2015 15:22
Geometria Plana
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.