por gprestes » Qua Nov 24, 2010 08:38
Olá pessoal!
Tudo bem?
Tenho 2 problemas de estatística para resolver:
1 - Duas pessoas combinam de encontrar-se entre as 14 e 15 horas ficando entendido que nenhuma delas esperará mais do que 15 minutos pela outra. Assuma que iguais intervalos de tempo têm associadas iguais probabilidades de chegada. Qual a probabilidade de as duas pessoas se encontrarem?
Consegui resolver por lógica, desenhando em gráficos e chegando ao resultado correto, que é 7 / 16 ou 43%.
Porém, preciso resolver isto por integral dupla, integrando em x e em y. E não consigo achar a função para integrar.
Alguém pode me ajudar?
2 - A procura diária de arroz num supermercado, em centenas de quilos, é uma variável aleatória com função densidade de probabilidade:
f(x)= { (2x)/3 para 0<=x<1, (-x/3) + 1 para 1<=x<=3, e 0 para outros valores de x }
a) Qual a probabilidade da procura exceder 150 kg de arroz em um dia escolhido ao acaso?
b) Calcule o valor esperado da procura diária de arroz, assim como uma medida da variabilidade dessa procura.
c) Qual a quantidade de arroz que deve ser deixada diariamente à disposição do público para que não falte arroz em 95% dos dias?
Este eu não sei nem começar.
Obrigado pela ajuda!
Guilherme
-
gprestes
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Ter Nov 23, 2010 23:00
- Formação Escolar: GRADUAÇÃO
- Área/Curso: tecnologia em redes de computadores
- Andamento: cursando
Voltar para Estatística
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Probabilidades de variáveis aleatórias discretas e continuas
por pogalski » Dom Jun 05, 2011 11:03
- 2 Respostas
- 2929 Exibições
- Última mensagem por MarceloFantini

Qua Jun 22, 2011 00:47
Estatística
-
- Probabilidade-variaveis aleatórias - Help
por benni » Dom Mai 08, 2011 12:03
- 2 Respostas
- 4149 Exibições
- Última mensagem por psdias

Ter Mai 22, 2012 09:42
Probabilidade
-
- [Probablidade] variáveis aleatórias
por 1paulo » Sáb Mai 17, 2014 13:06
- 0 Respostas
- 2149 Exibições
- Última mensagem por 1paulo

Sáb Mai 17, 2014 13:06
Probabilidade
-
- Prova com Variáveis Aleatórias Independentes
por EREGON » Seg Mai 18, 2015 09:02
- 0 Respostas
- 1211 Exibições
- Última mensagem por EREGON

Seg Mai 18, 2015 09:02
Probabilidade
-
- [Variáveis Aleatórias] Esperança Matemática
por guisore_09 » Ter Dez 29, 2015 08:58
- 4 Respostas
- 10812 Exibições
- Última mensagem por guisore_09

Dom Jan 03, 2016 10:20
Estatística
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.