por hmspriss » Qui Set 23, 2010 11:13
o exercício pede para calcular o volume de

e

o resultado era para ser
![4\pi(\sqrt[]{2}-1)/3 4\pi(\sqrt[]{2}-1)/3](/latexrender/pictures/a422565e1e628fcc695d547c34df99b4.png)
fiz os calculo usando a fórmula v=

mas o resultado deu

, acho que o problema está no intervalo da integração, eu coloquei de 0 até 1, qual seria o intervalo correto?
-
hmspriss
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Qui Set 23, 2010 10:59
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia civil
- Andamento: cursando
por MarceloFantini » Sex Set 24, 2010 01:32
O raio da semi-circunferência é

, e não 1. Logo:


Talvez eu tenha esquecido alguma coisa.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Integrais] Volume de um sólido obtido por rotação
por Leon » Sex Dez 05, 2014 16:05
- 1 Respostas
- 3473 Exibições
- Última mensagem por Leon

Sex Dez 05, 2014 16:52
Cálculo: Limites, Derivadas e Integrais
-
- Volume de Sólido pela Rotação em torno do Eixo y.
por diegodiscovery » Dom Jun 13, 2010 16:27
- 0 Respostas
- 3276 Exibições
- Última mensagem por diegodiscovery

Dom Jun 13, 2010 16:27
Cálculo: Limites, Derivadas e Integrais
-
- [Volume de um sólido obtido pela rotação em torno do eixo X]
por EmiliaMat » Ter Mai 06, 2014 21:16
- 1 Respostas
- 5330 Exibições
- Última mensagem por brunaraujo

Seg Jun 24, 2019 11:00
Cálculo: Limites, Derivadas e Integrais
-
- volume do sólido obtido pela rotação em torno de uma reta
por Fernandobertolaccini » Sáb Jul 26, 2014 19:31
- 0 Respostas
- 2111 Exibições
- Última mensagem por Fernandobertolaccini

Sáb Jul 26, 2014 19:31
Cálculo: Limites, Derivadas e Integrais
-
- Integrais - Volume por Rotação
por elisafrombrazil » Dom Abr 16, 2017 11:17
- 0 Respostas
- 4736 Exibições
- Última mensagem por elisafrombrazil

Dom Abr 16, 2017 11:17
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.