• Anúncio Global
    Respostas
    Exibições
    Última mensagem

UFRN 2001

UFRN 2001

Mensagempor Joana Gabriela » Seg Ago 09, 2010 11:00

Um fazendeiro dividiu 30 km2 de suas terras entre seus 4 filhos, de idades distintas, de modo que as áreas
dos terrenos recebidos pelos filhos estavam em progressão geométrica, de acordo com a idade, tendo
recebido mais quem era mais velho. Ao filho mais novo coube um terreno com 2 km2 de área.
O filho que tem idade imediatamente superior à do mais novo recebeu um terreno de área igual a:
A) 10 km2
B) 8 km2
C) 4 km2
D) 6 km2
Joana Gabriela
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Qua Jul 28, 2010 10:13
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Agroecologia
Andamento: cursando

Re: UFRN 2001

Mensagempor Molina » Seg Ago 09, 2010 15:17

Joana Gabriela escreveu:Um fazendeiro dividiu 30 km2 de suas terras entre seus 4 filhos, de idades distintas, de modo que as áreas
dos terrenos recebidos pelos filhos estavam em progressão geométrica, de acordo com a idade, tendo
recebido mais quem era mais velho. Ao filho mais novo coube um terreno com 2 km2 de área.
O filho que tem idade imediatamente superior à do mais novo recebeu um terreno de área igual a:
A) 10 km2
B) 8 km2
C) 4 km2
D) 6 km2

Boa tarde, Joana.

A primeira forma que me veio a mente é usar a fórmula da soma de PG:

S_n=\frac{a_1(1-q^n)}{1-q}

onde,

S_4=30
a_1=2
n=4

Substituindo esses valores e resolvendo, você chegaria numa equação incompleta do 4° grau para achar o q (razão). Não é difícil encontrar qual será esse valor. Feito isso basta multiplicar a razão pelo primeiro termo e você chega no resultado do problema.

Bom estudo.
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: UFRN 2001

Mensagempor Joana Gabriela » Ter Ago 10, 2010 16:07

Eu não sei resolver essa equação !
Joana Gabriela
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Qua Jul 28, 2010 10:13
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Agroecologia
Andamento: cursando

Re: UFRN 2001

Mensagempor MarceloFantini » Qua Ago 11, 2010 05:44

Tente fatorar ou encontrar uma raíz e aplicar Briot-Ruffini.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: UFRN 2001

Mensagempor Joana Gabriela » Qua Ago 11, 2010 11:22

A equação ficou assim:
30 = 2 (1 - {q}^{4})
1 - q
qx30 = 2 - 2 {q}^{4}
-2{q}^{4} + 30q + 2 = 0 *(-1)
2{q}^{4} - 30q - 2 = 0

Dai eu não sei mais resolver

Agradeço desde já a ajuda !
Joana Gabriela
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Qua Jul 28, 2010 10:13
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Agroecologia
Andamento: cursando

Re: UFRN 2001

Mensagempor Molina » Qua Ago 11, 2010 21:43

Chuta q=2 que vai dar certo.

:y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: UFRN 2001

Mensagempor Joana Gabriela » Sex Ago 13, 2010 10:38

Deu naum !
Joana Gabriela
Usuário Ativo
Usuário Ativo
 
Mensagens: 20
Registrado em: Qua Jul 28, 2010 10:13
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Agroecologia
Andamento: cursando


Voltar para Conversão de Unidades

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}