• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limites - erro em prova?

Limites - erro em prova?

Mensagempor LFurriel » Dom Jul 25, 2010 22:41

Olá, realizei uma prova da usp hoje, e após conferir o gabarito fiquei com uma dúvida.
http://www.fuvest.br/tran2011/provas/tran2011.exa.pdf ..
a questao 43, da pagina 8, me deixou intrigada.
Pois para mim, a resposta seria a alternativa d, contraria ao que diz no gabarito, que aponta a B como correta.
Gostaria que alguem me explicasse o porque. Obrigada!
LFurriel
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sex Jul 23, 2010 23:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Limites - erro em prova?

Mensagempor Lucio Carvalho » Seg Jul 26, 2010 00:02

Olá LFurriel,
Apresento, em anexo, a ajuda.
Espero que compreendas!
Anexos
limite.png
limite.png (8.01 KiB) Exibido 3398 vezes
Avatar do usuário
Lucio Carvalho
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 127
Registrado em: Qua Ago 19, 2009 11:33
Localização: Rua 3 de Fevereiro - São Tomé
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Física/Química
Andamento: formado

Re: Limites - erro em prova?

Mensagempor LFurriel » Seg Jul 26, 2010 00:07

Ola, só nao entendi pq o primeiro limite vale 0 e nao 2.
Pois nao seria 2 multiplicando um limite notavel de sen(x)/x qe vale 1?
por isso pra mim a resposta seria 5/2, pois seria esse 2 somado a 1/2 da segunda expressão.
Obrigada!
LFurriel
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sex Jul 23, 2010 23:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Limites - erro em prova?

Mensagempor Lucio Carvalho » Seg Jul 26, 2010 00:18

Olá LFurrier,
Atenção! No primeiro limite não temos x a tender para zero.

No segundo, apesar de termos x a tender para mais infinito, no numerador está sen(1/x) e no denominador (1/x). É o mesmo que termos x a tender para zero e, no numerador existir sen x e no denominador x.

Espero que tenhas compreendido.
Avatar do usuário
Lucio Carvalho
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 127
Registrado em: Qua Ago 19, 2009 11:33
Localização: Rua 3 de Fevereiro - São Tomé
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Física/Química
Andamento: formado

Re: Limites - erro em prova?

Mensagempor LFurriel » Seg Jul 26, 2010 00:31

Desculpa a insistência, mas ainda nao compreendi ..
pois para utilizei o seguinte raciocinio, usando 1/x =v, quando "x" tender para o infinito "v" vai tender para zero, e isso vale para os dois.
como o somente o segundo é utilizado do limite notavel?

Usando entao x = 1/v. Fazendo a substituição e fazendo a nova variável tender para zero vem:

limite x --> +inf de 2(senx)/x + (x/2)sen(1/x) =

limite x --> 0 de 2[sen(1/v)/(1/v)] + (1/2v)sen(v) =

limite x --> 0 de 2[sen(1/v)/(1/v)] + (1/2)(senv)/v =

limite x --> 0 de 2[1] + (1/2)(1) =

2+1/2 = 5/2

Chegando na letra "d".

Queria entender!

Obrigada pela paciencia!
LFurriel
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sex Jul 23, 2010 23:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Limites - erro em prova?

Mensagempor MarceloFantini » Seg Jul 26, 2010 15:28

No limite fundamental da função seno, o denominador tem que sempre tender a zero, qualquer que seja ele. \lim_{x \to +\infty} \frac{1}{2} \cdot \frac{sen \frac{1}{x}}{\frac{1}{x}}, o denominador tende a zero, portanto caracteriza o limite fundamental. Vou fazer com a mudança de variável que você fez: \frac{1}{x} = v tal que x \to +\infty \Rightarrow v \to 0: \lim_{v \to 0} \frac{1}{2} \cdot \frac{sen v}{v} = \frac{1}{2}
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?