por mazoni » Seg Jun 21, 2010 18:09
2) 52 pessoas discutem a preferência por dois produtos A e B, entre outros e conclui-se que o número de pessoas que gostavam de B era:
I - O quadruplo do número de pessoas que gostavam de A e B;
II - O dobro do número de pessoas que gostavam de A;
III - A metade do número de pessoas que não gostavam de A nem de B.
Nessas condições, o número de pessoas que não gostavam dos dois produtos é igual a:
a) 48
b) 35
c) 36
d) 47
e) 37
Pessoal, estou perdindo nesse exercício, eu sou péssico em matemática, porém preciso muito aprender.



aqui mostra que 13 pessoas gostam de A e B?
Pessoal eu tenho muita dificuldade de entender os enunciados dos exercícios, por favor me ajudem.
-
mazoni
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Sáb Jun 19, 2010 14:26
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Técnico em Informática
- Andamento: formado
por gustavowelp » Seg Jun 28, 2010 19:10
Boa tarde Mazoni.
Acho que estás se esquecendo do "ENTRE OUTROS".
52 pessoas não discutem SOMENTE A e B. Discutem C, D...
Eu também estava tentando resolver, mas me incluo naqueles que não souberam resolver...
Se alguém souber, gostaria(mos) de saber a solução.
Um abraço a todos!
-
gustavowelp
- Usuário Parceiro

-
- Mensagens: 91
- Registrado em: Sex Jun 25, 2010 20:40
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Ciência da Computação
- Andamento: formado
Voltar para Álgebra Elementar
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- PUCRS Encontre a equação que expressa o grafico
por Marcos1978 » Sáb Nov 26, 2011 18:43
- 3 Respostas
- 5358 Exibições
- Última mensagem por MarceloFantini

Dom Nov 27, 2011 02:02
Funções
-
- A expressão abaixo expressa a inexistência de um limite?
por Douglas16 » Sáb Mar 02, 2013 13:23
- 2 Respostas
- 1374 Exibições
- Última mensagem por Douglas16

Sáb Mar 02, 2013 19:38
Cálculo: Limites, Derivadas e Integrais
-
- Expressão numérica
por thadeu » Qua Nov 18, 2009 16:12
- 1 Respostas
- 2591 Exibições
- Última mensagem por Elcioschin

Qua Nov 18, 2009 18:44
Álgebra Elementar
-
- Sequência numérica
por LuizAquino » Qua Fev 23, 2011 22:15
- 10 Respostas
- 5943 Exibições
- Última mensagem por Molina

Sáb Mar 12, 2011 13:53
Desafios Médios
-
- Expressão numerica
por karenblond » Ter Mai 15, 2012 23:55
- 6 Respostas
- 3777 Exibições
- Última mensagem por Cleyson007

Ter Mai 22, 2012 19:50
Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.