• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Nao consigo achar a forma reduzida da matriz..

Nao consigo achar a forma reduzida da matriz..

Mensagempor PeIdInHu » Seg Jun 14, 2010 23:07

Estou fazendo um exercicio que pede seguinte para usar as operaçoes elementares para reduzir a matriz á seguir a forma escalonada e á forma reduzida: minha duvida é que nao estou consguindo achar á forma reduzida.. que neste caso seria a propria identidade(ja que a matrix é quadrada).


|3 -2 -1|
|2 -1 -1|
|4 -3 -1|

Seguindo as etapas: L1 <= L1- L2
L2 <= L2- (2x)L1
L3 <= L3 -(4x)L1
L3 <= L3 - L2

consigo chegar á forma escalonada :
|1 -1 0|
|0 1 -1|
|0 0 0 |
pegando a matriz escalonada nao consigo chegar a reduzida.....e tb pegando a matriz normal tb nao consigo...sera q esta matriz entao nao possui reduzida??
PeIdInHu
Usuário Ativo
Usuário Ativo
 
Mensagens: 16
Registrado em: Sáb Mai 22, 2010 14:47
Formação Escolar: GRADUAÇÃO
Área/Curso: Imformatica Biomedica
Andamento: cursando

Re: Nao consigo achar a forma reduzida da matriz..

Mensagempor PeIdInHu » Seg Jun 14, 2010 23:55

nsss desculpe...acho q esta certo.... a propria matriz escalonada q achei é a propria reduzida tb...

pois satisfaz as afirmaçoes...

a) O primeiro elemento não nulo de uma linha não nula é 1
b) Toda linha nula ocorre abaixo de todas as linhas não nulas
c) O número de zeros precedendo o primeiro elemento não nulo de uma linha aumenta a cada linha até que sobrem somente linhas nulas, se houver
d) Cada coluna que possui o primeiro elemento não nulo=1 de alguma linha tem todos os outros elementos nulos.
PeIdInHu
Usuário Ativo
Usuário Ativo
 
Mensagens: 16
Registrado em: Sáb Mai 22, 2010 14:47
Formação Escolar: GRADUAÇÃO
Área/Curso: Imformatica Biomedica
Andamento: cursando


Voltar para Matrizes e Determinantes

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59