por LUCKYSB » Qua Jun 02, 2010 20:16
ITA-SP) Dentro de um tronco de pirâmide quadrangular regular, considera-se uma pirâmide regular cuja base é a base maior do tronco e cujo vértice é o centro da base menor do tronco. As arestas das bases medem a cm e 2acm. As áreas laterais do tronco e da pirâmide são iguais. Calcular a altura do tronco da pirâmide.
-
LUCKYSB
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Qua Jun 02, 2010 19:56
- Formação Escolar: ENSINO FUNDAMENTAL I
- Área/Curso: matematica
- Andamento: cursando
por Douglasm » Qua Jun 02, 2010 20:54
Olá LUCKYSB. Para resolver esse problema eu vou contar com a sua visão da figura em 3 dimensões, pois eu só vou postar os desenhos necessários para explicar os apótemas. Então vamos lá:
Primeiramente vamos a algumas considerações:

= aresta menor do tronco

= aresta maior do tronco

= altura

= apótema do tronco

= apótema da pirâmide

= área lateral do tronco

= área lateral da pirâmide
Para resolver o problema basta exprimirmos as áreas laterais em função de
a e
h. Comecemos com a área lateral do tronco:

- apótema tronco.jpg (6.13 KiB) Exibido 3335 vezes


Para a pirâmide:

- apótema pirâmide.jpg (5.08 KiB) Exibido 3335 vezes


Igualando as duas áreas:

Elevamos ambos os membros ao quadrado:


Até a próxima.
Editado pela última vez por
Douglasm em Qua Jun 02, 2010 22:09, em um total de 2 vezes.
-

Douglasm
- Colaborador Voluntário

-
- Mensagens: 270
- Registrado em: Seg Fev 15, 2010 10:02
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por LUCKYSB » Qua Jun 02, 2010 20:59
muito obrigado por ajudar grato
-
LUCKYSB
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Qua Jun 02, 2010 19:56
- Formação Escolar: ENSINO FUNDAMENTAL I
- Área/Curso: matematica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- ajuda
por Daiane kelly » Seg Mar 24, 2008 22:38
- 4 Respostas
- 6099 Exibições
- Última mensagem por Cleyson007

Ter Mai 12, 2009 17:43
Matrizes e Determinantes
-
- Ajuda
por Umbus » Sáb Out 18, 2008 14:12
- 2 Respostas
- 3453 Exibições
- Última mensagem por lopes

Sáb Jun 20, 2009 15:51
Álgebra Linear
-
- Ajuda.
por VanessaFontela » Qui Dez 04, 2008 10:32
- 0 Respostas
- 2748 Exibições
- Última mensagem por VanessaFontela

Qui Dez 04, 2008 10:32
Matemática Financeira
-
- Ajuda!!!
por GABRIELA » Seg Set 21, 2009 17:28
- 1 Respostas
- 2122 Exibições
- Última mensagem por Molina

Seg Set 21, 2009 19:56
Sistemas de Equações
-
- Ajuda!!!!!!
por GABRIELA » Ter Set 22, 2009 16:35
- 6 Respostas
- 4087 Exibições
- Última mensagem por GABRIELA

Qui Set 24, 2009 16:29
Sistemas de Equações
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.