Regras do fórum
A classificação destes desafios em fáceis, médios e difíceis, é apenas ilustrativa.
Eventualmente, o que pode ser difícil para a maioria, pode ser fácil para você e vice-versa.
por henrique25 » Dom Mai 09, 2010 16:18
Um virus de computador que se prolifera por mensagem de e-mail é colocado em 3 maquinas no primeiro dia.Cada dia, cada computador infectado no dia anterior infecciona 5 novas maquinas.No segundo dia é desenvolvido um antivirus e limpa-se 1 computador.Cada dia após esse,sao limpas 6 vezes mais maquinas do que foram limpas no dia anterior.Quantos dias vao se passar ate os efeitos,os virus estarem completamente eliminados?
-
henrique25
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Sáb Mai 08, 2010 15:13
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: informatica
- Andamento: cursando
por Elcioschin » Dom Mai 09, 2010 20:48
Virus ---> PG ---> a1 = 3, q = 5
Anti-virus ----> PG ----> a'1 = 1, q' = 6
Total de virus e anti-virus após n dias
Sv = 3*(5^n - 1)/(5 - 1) ----> Sv ~= (3/4)*5^n
Sa = 1*(6^n - 1)/(6 - 1) ----> Sa = (1/5)*6^n
Sa >= Sv ----> (1/5)*6^n >= (3/4)*5^n
(6/5)^n >= 15/4 ----> 1,2^n >= 3,75
Agora só com logaritmos ----> n = 8 dias
-
Elcioschin
- Colaborador Voluntário

-
- Mensagens: 624
- Registrado em: Sáb Ago 01, 2009 10:49
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: formado
Voltar para Desafios Difíceis
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Relaçao de Recorrencia
por henrique25 » Sáb Mai 08, 2010 17:07
- 1 Respostas
- 2564 Exibições
- Última mensagem por Douglasm

Sáb Mai 08, 2010 18:49
Álgebra Elementar
-
- relações de recorrência
por bebelo35 » Qua Dez 12, 2018 00:30
- 0 Respostas
- 1487 Exibições
- Última mensagem por bebelo35

Qua Dez 12, 2018 00:30
Cálculo: Limites, Derivadas e Integrais
-
- relação de recorrência - funções de Bessel
por MacGyver » Dom Nov 08, 2009 14:55
- 0 Respostas
- 1874 Exibições
- Última mensagem por MacGyver

Dom Nov 08, 2009 14:55
Cálculo: Limites, Derivadas e Integrais
-
- Relação de Recorrência - Método de substituição
por cesarxyz » Qui Abr 26, 2012 16:07
- 0 Respostas
- 1667 Exibições
- Última mensagem por cesarxyz

Qui Abr 26, 2012 16:07
Álgebra Elementar
-
- Relação de Recorrência - Máquina de vender selos
por cesarxyz » Qui Abr 26, 2012 16:02
- 0 Respostas
- 1562 Exibições
- Última mensagem por cesarxyz

Qui Abr 26, 2012 16:02
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.