por robmenas » Seg Abr 01, 2019 13:25
A imagem da transformação linear T(x,y,z)=(x,y,z)

(1,1,1), em que

indica o produto vetorial em

, é:
(A) 
(B) A reta de equação t(1,1,1), t 
(C) A reta de equação t(1,0,-1), t 
(D) O plano de equação x+y+z=0
(E) O plano de equação x-z=0
-
robmenas
- Novo Usuário

-
- Mensagens: 4
- Registrado em: Sáb Mar 30, 2019 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia civil
- Andamento: formado
por robmenas » Sáb Abr 06, 2019 15:07
T(x,y,z) = (x,y,z)

(1,1,1)
T(x,y,z) = (y-z , z-x , x-y)
T(x,y,z) = (0, -x, x) + (y, 0, -y) + (-z, z, 0)
T(x,y,z) = x(0, -1, 1) + y(1, 0, -1) + z(-1, 1, 0)
Ou seja, Im(T) é o conjunto gerado pelos vetores (0, -1, 1), (1, 0, -1) e (-1, 1, 0).
Opções:
(1) se os vetores são L.I., então Im(T) =

;
(2) se os vetores são L.D., então Im(T) forma algum plano ou alguma reta;
x(0, -1, 1) + y(1, 0, -1) + z(-1, 1, 0) = (0, 0, 0)

x = z = y que é diferente da solução trivial, então os vetores são linearmente dependentes. Descartando um deles, podemos dizer que
Im(T) é o conjunto gerado pelos vetores (0, -1, 1) e (1, 0, -1).
Opções:
(1) se os vetores são L.I., então Im(T) forma um plano;
(2) se os vetores são L.D., então Im(T) forma uma reta;
x(0, -1, 1) + y(1, 0, -1) = (0, 0, 0)

Que é a solução trivial. Logo os vetores são Linearmente independentes e Im(T) forma um plano.
Comparando aos planos dados nas alternativas, o único que se ajusta aos vetores (0, -1, 1) e (1, 0, -1), que são bases da Im(T), é x+y+z=0.
Logo, a resposta é a
alternativa D.
-
robmenas
- Novo Usuário

-
- Mensagens: 4
- Registrado em: Sáb Mar 30, 2019 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia civil
- Andamento: formado
Voltar para Álgebra Linear
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Imagem de uma transformação linear
por judsonpraxedes » Sex Dez 04, 2015 09:00
- 1 Respostas
- 1856 Exibições
- Última mensagem por adauto martins

Dom Mar 27, 2016 11:32
Álgebra Linear
-
- [Álgebra Linear] Núcleo e Imagem
por RafaelPereira » Seg Mar 04, 2013 15:39
- 0 Respostas
- 1504 Exibições
- Última mensagem por RafaelPereira

Seg Mar 04, 2013 15:39
Álgebra Linear
-
- [Transformação Linear] Nucleo e Imagem, ache a transformaçao
por vualas » Qua Nov 07, 2012 00:37
- 2 Respostas
- 4073 Exibições
- Última mensagem por adauto martins

Qui Dez 15, 2016 11:12
Álgebra Linear
-
- Período e imagem
por David Soni » Qua Nov 25, 2009 10:33
- 1 Respostas
- 3089 Exibições
- Última mensagem por Molina

Qua Nov 25, 2009 14:28
Trigonometria
-
- Conjunto imagem
por manuoliveira » Dom Jun 20, 2010 22:08
- 1 Respostas
- 2757 Exibições
- Última mensagem por Molina

Qua Jun 23, 2010 21:12
Trigonometria
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.