• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limites no infinito

Limites no infinito

Mensagempor felipe_ad » Sáb Abr 24, 2010 15:00

Olá
Estou com duas duvidas sobre limites no infinito.
A primeira é sobre o estudo do sinal do numero proximo de zero no denominador. Ex: lim(2x5-3x²+2)/-x²+7 quando x->+infinito
A outra é sobre como identificar uma indeterminaçao do tipo "infinito-infinito", por exemplo, no seguinte limite: lim(3x5-4x³+1) quando x->+infinito

Tenho prova segunda, me ajudem rsrs
Agradeço desde já
felipe_ad
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Sáb Abr 03, 2010 12:37
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: Limites no infinito

Mensagempor MarceloFantini » Sáb Abr 24, 2010 18:34

Felipe, esclareça: \lim_{x \to +\infty} \frac {2x^5 -3x^2 +2} {-x^2 +7}; \lim_{x \to +\infty} 3x^5 -4x^3 +1.

Se forem estes os casos, no segundo acredito que não exista determinação, pois x^5 cresce muito mais que x^3, então o limite é infinito mesmo. Indeterminação é quando se tem \frac {\infty}{0}; \frac {0}{0}; \frac {\infty}{\infty}. No primeiro, eu faria assim: \lim_{x \to +\infty} \frac {x^5 (2 - \frac {3}{x^3} + \frac {2}{x^5})} {x^2 (-1 + \frac {7}{x^2})} = \lim_{x \to +\infty} \frac { x^3 ( 2 - \frac {3}{x^3} + \frac {2}{x^5}) } {-1 + \frac {7}{x^2}}. Quando x está tendendo ao infinito, \frac {7}{x^2}; \frac {3}{x^3}; \frac {2}{x^5} todos tendem a 0, sobrando \lim_{x \to + \infty} = -2x^3 = - \infty.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Limites no infinito

Mensagempor felipe_ad » Sáb Abr 24, 2010 19:29

No primeiro caso, entendi como vc fez. Mas é que no livro que tenho, ensina diferente: divide todos os termos pelo termo de maior grau, no caso {x}^{5}, ai o denominador ficaria -\frac{1}{{x}^{3}}+\frac{7}{{x}^{5}}, como x\rightarrow+\infty, o denominador seria 0, daí ele (o livro) fala que se for {0}^{-}, no caso algum número que se aproxime de zero pela esquerda, o limite seria -\infty. É ai que queria saber como saber o sinal desse número aproximado de zero.

O segundo caso, tá tranquilo já.

Obrigado.
felipe_ad
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Sáb Abr 03, 2010 12:37
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: Limites no infinito

Mensagempor MarceloFantini » Dom Abr 25, 2010 02:27

Eu aprendi a colocar as maiores potências em evidência e trabalhar daí pra frente. Qual método você achou mais fácil de trabalhar? Escolha aquele que você entenda o conceito e sinta-se confortável em trabalhar.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 9 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)