• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equação com Radical

Equação com Radical

Mensagempor LAYLA » Qui Jun 07, 2018 21:14

Existem a e b números reais tais que
{(2-\sqrt[]{7})}^{3}=a-b \sqrt[]{7}

qual o valor de a+b?

Estou com dificuldade de separar o b da raiz de 7
LAYLA
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qui Jun 07, 2018 20:50
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: ENG CIVIL
Andamento: formado

Re: Equação com Radical

Mensagempor Gebe » Sáb Jun 09, 2018 10:28

Basta expandir o termo {(2-\sqrt[]{7})}^{3}.
Fazendo isso (conferir!) a equação fica: {(50-19\sqrt[]{7})}=a-b\sqrt[]{7}

Igualando os dois lados da equação, teremos: a = 50 e b = 19
A soma da 69.
Espero ter ajudado, bons estudos.
Gebe
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 149
Registrado em: Qua Jun 03, 2015 22:47
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletrica
Andamento: cursando


Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.