por Franck FK » Dom Dez 10, 2017 18:10
Não tenho nenhuma ideia do que fazer quando o argumento é diferente de x.
Exemplo:

, como faço para achar a sua derivada?
-
Franck FK
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Dom Dez 10, 2017 17:51
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engª de Telecomunicações
- Andamento: cursando
por jbandrade1618 » Qui Jan 11, 2018 13:13
Olá Franck.
Podemos trocar de variável ao realizar a derivada, tornando o problema mais simples, veja:
Como

Portanto, tem-se:
![y=d\theta.dsen(\theta)=(-1)cos(\frac{\pi}{2}-x)=-[cos(\frac{\pi}{2}).cosx+sen(\frac{\pi}{2}).senx]=-senx y=d\theta.dsen(\theta)=(-1)cos(\frac{\pi}{2}-x)=-[cos(\frac{\pi}{2}).cosx+sen(\frac{\pi}{2}).senx]=-senx](/latexrender/pictures/b0d66f277ccc409f62fa1e8fb2511ba9.png)
Espero ter ajudado.

-
jbandrade1618
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Qui Jan 11, 2018 01:18
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por Romario_rj » Qua Abr 11, 2018 00:11
Show,grande ajuda.
-
Romario_rj
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Seg Abr 09, 2018 21:06
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- derivação de funções
por SILMARAKNETSCH » Sex Nov 09, 2012 16:17
- 9 Respostas
- 4507 Exibições
- Última mensagem por DanielFerreira

Qua Nov 14, 2012 23:28
Equações
-
- Ajudar nas justificativas e argumentos em álgebra linear:
por Alerecife » Sáb Abr 27, 2013 22:49
- 0 Respostas
- 1791 Exibições
- Última mensagem por Alerecife

Sáb Abr 27, 2013 22:49
Álgebra
-
- Derivação - derivação logarítmica
por teer4 » Ter Mai 21, 2013 12:11
- 0 Respostas
- 2004 Exibições
- Última mensagem por teer4

Ter Mai 21, 2013 12:11
Cálculo: Limites, Derivadas e Integrais
-
- Derivação
por Michelee » Seg Mai 16, 2011 15:24
- 1 Respostas
- 2073 Exibições
- Última mensagem por LuizAquino

Seg Mai 16, 2011 19:29
Cálculo: Limites, Derivadas e Integrais
-
- [Derivação]
por carolinenonato » Ter Abr 03, 2012 16:30
- 3 Respostas
- 3174 Exibições
- Última mensagem por MarceloFantini

Ter Abr 03, 2012 20:32
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.