por caioquinterno » Seg Nov 06, 2017 18:32
O exercício é o seguinte:
Calcule a integral abaixo;
Eu estou com dificuldades nela, tentei resolver porém difere do gabarito da minha lista.
Minha resolução

- minha resolução
Porém estou com dificuldades enquanto a substituição do " du " e se fica mesmo

, não tenho certeza se minha substituição está correta ou se foi no meu desenvolvimento, gostaria que se alguém pudesse me ajudar.
Obrigado, desde já!

-
caioquinterno
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Seg Nov 06, 2017 18:06
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Economia
- Andamento: cursando
por nakagumahissao » Sex Fev 23, 2018 21:51
Eu faço a diferença. E você?
Do Poema: Quanto os professores "fazem"?
De Taylor Mali
-
nakagumahissao
- Colaborador Voluntário

-
- Mensagens: 386
- Registrado em: Qua Abr 04, 2012 14:07
- Localização: Brazil
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Lic. Matemática
- Andamento: cursando
-
por jlgraceli » Sáb Fev 24, 2018 09:31
colegas,
Para resolver esta integral, seguir os passos abaixo.
1) multiplicar x por raiz de x, que é igual x elevado a 3/2;
2) separar em duas integrais;
3)achar a integral de x elevado a 3/2 e a integral de dx.
fim.
-
jlgraceli
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Sáb Fev 24, 2018 09:22
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matemática
- Andamento: cursando
por jlgraceli » Sáb Fev 24, 2018 09:33
Contudo, se o -1 está dentro da raiz, deve ser feita a substituição.
-
jlgraceli
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Sáb Fev 24, 2018 09:22
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matemática
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Integral por substituição / Integral por partes
por Carlos28 » Seg Out 19, 2015 12:25
- 1 Respostas
- 2924 Exibições
- Última mensagem por nakagumahissao

Seg Out 19, 2015 23:26
Cálculo: Limites, Derivadas e Integrais
-
- [Integral] Substituição
por Aliocha Karamazov » Qui Fev 23, 2012 23:57
- 2 Respostas
- 2311 Exibições
- Última mensagem por MarceloFantini

Sex Fev 24, 2012 12:07
Cálculo: Limites, Derivadas e Integrais
-
- Integral (substituição)
por kika_sanches » Sex Mar 23, 2012 14:42
- 4 Respostas
- 2929 Exibições
- Última mensagem por kika_sanches

Sex Mar 23, 2012 15:35
Cálculo: Limites, Derivadas e Integrais
-
- integral por substituiçao (u.du)
por menino de ouro » Dom Nov 18, 2012 10:46
- 1 Respostas
- 1729 Exibições
- Última mensagem por young_jedi

Dom Nov 18, 2012 10:54
Cálculo: Limites, Derivadas e Integrais
-
- integral por substituiçao (u.du)
por menino de ouro » Seg Nov 19, 2012 16:23
- 7 Respostas
- 4273 Exibições
- Última mensagem por MarceloFantini

Ter Nov 20, 2012 21:45
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
[calculo] derivada
Autor:
beel - Seg Out 24, 2011 16:59
Para derivar a função
(16-2x)(21-x).x
como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?
Assunto:
[calculo] derivada
Autor:
MarceloFantini - Seg Out 24, 2011 17:15
Você poderia fazer a distributiva e derivar como um polinômio comum.
Assunto:
[calculo] derivada
Autor:
wellersonobelix - Dom Mai 31, 2015 17:26
Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um
Assunto:
[calculo] derivada
Autor:
wellersonobelix - Dom Mai 31, 2015 17:31
derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.