por caarolsnp » Sex Out 13, 2017 11:40
Preciso classificar em V ou F essa questão, mas nem sei como começar, qualquer ideia é bem vinda. Preciso de alguma coisa pra ontem!!!!e
Segue:
A função f(x, y) = x^2/y, se (x, y) e tal que

e f(x, y) = x em caso contrário, não e contínua em (0, 0), mas tem derivadas parciais contínuas nesse ponto.
-
caarolsnp
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Sex Out 13, 2017 11:29
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matematica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Derivadas parciais
por john » Ter Fev 15, 2011 15:37
- 7 Respostas
- 6492 Exibições
- Última mensagem por john

Sáb Fev 19, 2011 16:24
Cálculo: Limites, Derivadas e Integrais
-
- Derivadas parciais
por baianinha » Ter Jul 05, 2011 00:50
- 1 Respostas
- 2497 Exibições
- Última mensagem por MarceloFantini

Ter Jul 05, 2011 03:53
Cálculo: Limites, Derivadas e Integrais
-
- DERIVADAS PARCIAIS
por allyourwishes » Seg Jul 13, 2015 11:24
- 0 Respostas
- 2281 Exibições
- Última mensagem por allyourwishes

Seg Jul 13, 2015 11:24
Cálculo: Limites, Derivadas e Integrais
-
- [otimização] DERIVADAS PARCIAIS
por montanha » Seg Ago 04, 2008 10:18
- 5 Respostas
- 12875 Exibições
- Última mensagem por admin

Sex Ago 08, 2008 15:14
Cálculo: Limites, Derivadas e Integrais
-
- [Derivada] Derivadas parciais
por -civil- » Qui Set 29, 2011 15:28
- 1 Respostas
- 1970 Exibições
- Última mensagem por LuizAquino

Sex Set 30, 2011 17:57
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
Exercicios de polinomios
Autor:
shaft - Qua Jun 30, 2010 17:30
Então, o exercicio pede para encontrar

.
Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !
Assunto:
Exercicios de polinomios
Autor:
Douglasm - Qua Jun 30, 2010 17:53
Bom, se desenvolvermos isso, encontramos:
Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):
Somando a primeira e a segunda equação:
Finalmente:
Até a próxima.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.