por NavegantePI » Qui Mar 02, 2017 00:43
Boa noite, segue a questão abaixo:
"Uma gota esférica de chuva evapora a uma taxa proporcional a sua área de superfície. Escreva uma equação
diferencial para o volume de uma gota de chuva em função do tempo."
A resposta é

, mas não consigo chegar a solução.
Alguém poderia me explicar como se resolve por favor?
No aguardo (:
-
NavegantePI
- Novo Usuário

-
- Mensagens: 9
- Registrado em: Dom Mar 06, 2016 23:07
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Eng. de Mecanica
- Andamento: cursando
Voltar para Equações
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Livro EDO: Introdução às Equações Diferenciais Ordinárias
por admin » Sáb Jul 21, 2007 19:59
- 2 Respostas
- 5906 Exibições
- Última mensagem por bruno_dias

Ter Set 01, 2009 01:54
Cálculo
-
- [Equações Diferenciais Ordinárias e Aplicações]Duvidas
por pdss » Qua Dez 07, 2011 17:56
- 1 Respostas
- 1722 Exibições
- Última mensagem por LuizAquino

Qua Dez 07, 2011 20:14
Cálculo: Limites, Derivadas e Integrais
-
- Introdução as Equaçoes Diferenciais Ordinárias - Unicidade
por dileivas » Qua Mar 14, 2012 21:32
- 2 Respostas
- 2375 Exibições
- Última mensagem por dileivas

Qui Mar 15, 2012 00:07
Cálculo: Limites, Derivadas e Integrais
-
- [PROBLEMAS DE MODELAGEM] EQUAÇÕES DIFERENCIAIS ORDINÁRIAS
por DanielGL » Ter Mai 03, 2016 14:55
- 1 Respostas
- 3104 Exibições
- Última mensagem por adauto martins

Sex Mai 06, 2016 19:12
Cálculo: Limites, Derivadas e Integrais
-
- Equações Diferencias Ordinárias- Urgente
por leroaquino » Sáb Set 19, 2015 14:17
- 0 Respostas
- 1258 Exibições
- Última mensagem por leroaquino

Sáb Set 19, 2015 14:17
Equações
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.