por carlota_almada » Dom Dez 04, 2016 13:17
No exercício era dado o seguinte polinómio:

Depois, dizia que era para determinar m por dois processos distintos, de modo que o resto da divisão de P(x) por x-1 seja 3.
Já tentei de todas as formas resolver, mas não consigo lá chegar. Podem ajudar-me?
-
carlota_almada
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Dom Dez 04, 2016 13:07
- Formação Escolar: ENSINO FUNDAMENTAL I
- Área/Curso: Ciências e tecnologias
- Andamento: cursando
por Cleyson007 » Seg Dez 05, 2016 20:35
Boa noite Carlota!
Seja bem-vinda ao Ajuda Matemática!
1ª forma: Como P(x) é divisível por x - 1, então 1 é raiz de P(x). Assim sendo, basta verificar o valor da equação 2x^4 - x² +x - m = 3 quando x = 1.
2ª forma: Utilizando o Dispositivo Prático de Briott - Ruffini.
Sou professor de matemática e trabalho resolvendo exercícios de Matemática a um custo acessível e ótimo prazo de entrega. Caso queira conhecer melhor o meu trabalho, deixo o contato:
e-mail:
descomplicamat@hotmail.comWhatsApp: (38) 9 9889-5755
Atenciosamente,
Prof. Clésio
-

Cleyson007
- Colaborador Voluntário

-
- Mensagens: 1228
- Registrado em: Qua Abr 30, 2008 00:08
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática UFJF
- Andamento: formado
Voltar para Polinômios
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [PA] Uma dúvida numa questão de PA
por rochadapesada » Qui Abr 04, 2013 22:08
- 3 Respostas
- 2439 Exibições
- Última mensagem por DanielFerreira

Dom Abr 07, 2013 20:28
Progressões
-
- Duvida numa funçao definida por ramos
por AnaOliveira » Sáb Abr 30, 2011 16:54
- 12 Respostas
- 6991 Exibições
- Última mensagem por NMiguel

Dom Mai 01, 2011 19:35
Funções
-
- [conjunto] dúvida numa questão da cespe
por Fabio Wanderley » Dom Abr 29, 2012 16:53
- 3 Respostas
- 2256 Exibições
- Última mensagem por MarceloFantini

Seg Mai 28, 2012 22:49
Conjuntos
-
- [teoria de limites] dúvida numa questão de prova
por Fabio Wanderley » Sex Abr 13, 2012 23:38
- 2 Respostas
- 1796 Exibições
- Última mensagem por Fabio Wanderley

Sáb Abr 14, 2012 00:43
Cálculo: Limites, Derivadas e Integrais
-
- [Derivada de função de duas variáveis] Dúvida numa passagem
por Fabio Wanderley » Sáb Dez 06, 2014 14:51
- 4 Respostas
- 3547 Exibições
- Última mensagem por adauto martins

Qua Dez 10, 2014 21:28
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.