por Huovi » Sáb Abr 09, 2016 00:15
Como eu resolvo o lim x->1 (?x - 1)/(1 - x^1/3) ? Simplesmente não consigo fazer. O step by step do wolfram também não me ajudou em nada. Help pliz D:
-
Huovi
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Sáb Abr 09, 2016 00:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia da Computação
- Andamento: cursando
por DanielFerreira » Dom Abr 10, 2016 10:35
Huovi escreveu:Como eu resolvo o
![\lim_{x \to 1} \frac{\sqrt{x} - 1}{1 - \sqrt[3]{x}} \lim_{x \to 1} \frac{\sqrt{x} - 1}{1 - \sqrt[3]{x}}](/latexrender/pictures/b4a852b91dcd5a0994ce145d8c8a36da.png)
? Simplesmente não consigo fazer. O step by step do wolfram também não me ajudou em nada. Help pliz D:
Olá
Huovi, seja bem-vindo(a)!
Nesses limites devemos encontrar uma maneira de cancelar o fator que anula o denominador. Fazemos isso multiplicando-o pelo seu "conjugado".
Outro ponto a destacar é a fatoração. Note que

, por conseguinte
![(1 - x) = (1 - \sqrt[3]{x})(1 + \sqrt[3]{x} + \sqrt[3]{x^2}) (1 - x) = (1 - \sqrt[3]{x})(1 + \sqrt[3]{x} + \sqrt[3]{x^2})](/latexrender/pictures/21e3c21fc695982f70a4b0ddba7f6a00.png)
.
Daí,
![\\ \lim_{x \to 1} \frac{\sqrt{x} - 1}{1 - \sqrt[3]{x}} = \\\\\\ \lim_{x \to 1} \frac{\sqrt{x} - 1}{1 - \sqrt[3]{x}} \times \frac{(\sqrt{x} + 1)}{\sqrt{x} + 1} \times \frac{(1 + \sqrt[3]{x} + \sqrt[3]{x^2})}{(1 + \sqrt[3]{x} + \sqrt[3]{x^2})} = \\\\\\ \lim_{x \to 1} \frac{(x - 1)(1 + \sqrt[3]{x} + \sqrt[3]{x^2})}{(1 - x)(\sqrt{x} + 1)} = \\\\\\ \lim_{x \to 1} \frac{\cancel{(x - 1)}(1 + \sqrt[3]{x} + \sqrt[3]{x^2})}{- \cancel{(x - 1)}(\sqrt{x} + 1)} = \\\\\\ \lim_{x \to 1} \frac{(1 + \sqrt[3]{x} + \sqrt[3]{x^2})}{- (\sqrt{x} + 1)} = \\\\\\ \frac{1 + 1 + 1}{- (1 + 1)} = \\\\\\ \boxed{- \frac{3}{2}} \\ \lim_{x \to 1} \frac{\sqrt{x} - 1}{1 - \sqrt[3]{x}} = \\\\\\ \lim_{x \to 1} \frac{\sqrt{x} - 1}{1 - \sqrt[3]{x}} \times \frac{(\sqrt{x} + 1)}{\sqrt{x} + 1} \times \frac{(1 + \sqrt[3]{x} + \sqrt[3]{x^2})}{(1 + \sqrt[3]{x} + \sqrt[3]{x^2})} = \\\\\\ \lim_{x \to 1} \frac{(x - 1)(1 + \sqrt[3]{x} + \sqrt[3]{x^2})}{(1 - x)(\sqrt{x} + 1)} = \\\\\\ \lim_{x \to 1} \frac{\cancel{(x - 1)}(1 + \sqrt[3]{x} + \sqrt[3]{x^2})}{- \cancel{(x - 1)}(\sqrt{x} + 1)} = \\\\\\ \lim_{x \to 1} \frac{(1 + \sqrt[3]{x} + \sqrt[3]{x^2})}{- (\sqrt{x} + 1)} = \\\\\\ \frac{1 + 1 + 1}{- (1 + 1)} = \\\\\\ \boxed{- \frac{3}{2}}](/latexrender/pictures/356d8dc301fca65965aba996fa730826.png)
Espero ter ajudado!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
por Huovi » Dom Abr 10, 2016 17:40
Obrigada

só mais uma pergunta, por que multiplicou apenas o denominador por -1? não deveria ter multiplicado a fração toda não?
-
Huovi
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Sáb Abr 09, 2016 00:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia da Computação
- Andamento: cursando
por DanielFerreira » Dom Abr 10, 2016 20:22
Não multipliquei por

. O que fiz foi o seguinte:

"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
por Huovi » Dom Abr 24, 2016 01:12
Ahhhh, agora entendi. Agradeço

-
Huovi
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Sáb Abr 09, 2016 00:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia da Computação
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [LIMITE] limites no infinito com raízes
por camila_braz » Dom Jun 11, 2017 11:42
- 0 Respostas
- 2959 Exibições
- Última mensagem por camila_braz

Dom Jun 11, 2017 11:42
Cálculo: Limites, Derivadas e Integrais
-
- [LIMITE] Limites que tendem ao infinito com raízes
por Mell » Qua Mai 01, 2013 15:21
- 3 Respostas
- 2722 Exibições
- Última mensagem por e8group

Sáb Mai 04, 2013 02:41
Cálculo: Limites, Derivadas e Integrais
-
- [LIMITE] Limites com raízes e zerando numerador/denominador
por renataoalves » Ter Set 16, 2014 17:14
- 1 Respostas
- 3608 Exibições
- Última mensagem por jcmatematica

Qui Set 25, 2014 23:14
Cálculo: Limites, Derivadas e Integrais
-
- [LIMITES] Limites com duas raízes
por Atom » Dom Mai 25, 2014 20:22
- 1 Respostas
- 1953 Exibições
- Última mensagem por e8group

Dom Mai 25, 2014 21:59
Cálculo: Limites, Derivadas e Integrais
-
- Limites, conjugado de raizes
por moyses » Qui Out 06, 2011 12:16
- 19 Respostas
- 25117 Exibições
- Última mensagem por LuizAquino

Dom Out 09, 2011 19:16
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.